DATA PROCESSING AND ANALYSIS
INTELLIGENCE SYSTEMS AND TECHNOLOGIES
MATHEMATICAL MODELING
MANAGEMENT AND DECISION MAKING
MATHEMATICAL FOUNDATIONS OF INFORMATION TECHNOLOGY
S. A. Karatach, V. G. Sinuk Parallel Implementation of Evolutionary Learning of a Fuzzy System with Non-Singleton Fuzzification
S. A. Karatach, V. G. Sinuk Parallel Implementation of Evolutionary Learning of a Fuzzy System with Non-Singleton Fuzzification
Abstract. 

Fuzzy systems with fuzzy inputs can be used in tasks where it is necessary to make predictions for data objects that have fizzy characteristics. However, building an optimal block of rules for such a system may be non-trivial, including due to the requirement to have a certain depth of knowledge in the subject area. In this situation, there is a need to automate the process of compiling the rule base, that is, to build a machine learning algorithm. In this paper, we propose to use a genetic (evolutionary) algorithm as such an algorithm. It describes both the specifics of using this family of algorithms for training a fuzzy system, and the features of parallel implementation of the learning process using CUDA technology.

Keywords: 

Parallel implementation CUDA, Evolutionary learning, Fuzzy system

PP. 113-122.

DOI 10.14357/20718632230212
 
References

1. L. Rutkowski. Methods and techniques of artificial intelligence. Hot Line Telecom, Moscow, 2010. ISBN 978-5-9912-0105-6. doi: 10.1049/piee.1974. 0328.
2. L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning—i. 8(3):199–249, 1975. doi: 10.1016/0020-0255(75) 90036-5.
3. N. Borisov, A. V. Alekseev, O. A. Kromberg, and etc. Decision-making models based on a linguistic variable. Senate, Riga, 1982.
4. Wen-Ruey Hwang and W. E. Thompson. Design of intelligent fuzzy logic controllers using genetic algorithms, 1994.
5. C. L. Karr and E. J. Gentry. Fuzzy control of ph using genetic algorithms. IEEE Transactions on Fuzzy Systems, 1(1):46–, 1993. doi: 10.1109/TFUZZ. 1993.390283.
6. Michael A. Lee and Hideyuki Takagi. Dynamic control of genetic algorithms using fuzzy logic techniques. In Pro-ceedings of the 5th International Conference on Genetic Algorithms, page 76–83, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1558602992. doi: 10.5555/645513.657425.
7. D. Dubois and A. Prad. Theory of possibilities. Applications to the representation of knowledge in computer science. Radio and communications, Moscow, 1990. ISBN 5-256-00184-1. doi: 10.1007/3-540-45493-4 24.
8. V G Sinuk and M V Panchenko. Method of fuzzy inference for one class of MISO-structure systems with non-singleton inputs. IOP Conference Series: Materials Science and Engineering, 327:042074, 3 2018. doi: 10.1088/1757-899x/327/4/042074.
9. V. G. Sinuk and E. V. Pivnenko. About an analytic calculation of fuzzy truth value. pages 129–133, 2006.
10. D. A. Kutsenko and V. G. Sinuk. Algorithms for finding cp under a piecewise linear representation of membership functions. pages 87–92, 2008.
11. Yuhui Shi, R. Eberhart, and Yaobin Chen. Implementation of evolutionary fuzzy systems. IEEE Transactions on Fuzzy Systems, 7(2):109–119, 1999. doi: 10.1109/91.755393.
12. Komartsova L.G., Kureychik V.V., Sorokin S.N., Tsoi Y.R., Yankovskaya A.E., Yarushkina N.G. Bionic information systems and their practical applications. Fizmatlib, 2011. ISBN: 978-5-9221-1302-1.
13. Gladkov L. A., Kureychik V. V., Kureychik V. M. Genetic algorithms. Fizmatlit, 2nd ed, 2006. ISBN: 978-5-9221-0510-1.
14. Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional, 1st edition, 2010. ISBN 0131387685.
15. NVIDIA Developer Zone. Cuda programming guide. https://docs.nvidia. com/cuda/cuda-c-programming-guide/index.html, 2020. [Online; accessed 1-December-2020].
16. NVIDIA Developer Zone. Cuda best practices guide. https://docs.nvidia. com/cuda/cuda-c-best-practices-guide/index.html, 2020. [Online; accessed 1-December-2020].
17. UCI Machine Learning Repository. Balance scale data set. https:// archive.ics.uci.edu/ml/datasets/Balance+Scale, 2020. [Online; accessed 1December-2020].
18. Yuqi Cui and Dongrui Wu and Jian Huang. Optimize TSK Fuzzy Systems for Classification Problems: Minibatch Gradient Descent With Uniform Regularization and Batch Normalization. IEEE Transactions on Fuzzy Systems. Institute of Electrical and Electronics Engineers (IEEE), 12 (28), pages 3065-3075, 2020. doi: 10.1109/tfuzz.2020.2967282.
 

2024 / 01
2023 / 04
2023 / 03
2023 / 02

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".