Macrosystem dynamics
Community informatics
T.I.Zhukova The research of stability factors in professional online communities
Evaluation of the effectiveness of investment projects
T.I.Zhukova The research of stability factors in professional online communities
Abstract. 

The article is devoted to the study of a fundamental task to solve the problem of achieving stability and increasing the number of participants in professional online communities, which have a powerful potential to increase network human capital and increase the efficiency of professional activity. There are two empirically confirmed directions leading to an increase in the level and quality of participation. Collaboration is investigated as a factor of success of large-scale scientific projects, emphasizing the crucial importance of the ability of organizers to initiate the creation of a web community that stimulates the interest of participants in the results of common work. The topical issue of the influence of personal characteristics of online community members on the nature and level of their involvement is also considered. The practices of studying the influence of personality traits on the stability of communities within the framework of the Five Personality Traits model are analyzed, an interactive approach to the consideration of the problem is formulated. The conclusion is substantiated about the effectiveness of an innovative approach to solving the fundamental problem of preserving and increasing the level and quality of user activity in online communities, based on the use of personalized targeted tools to increase motivation to participate in order to develop effective strategies for attracting participants in a more user-oriented way.

Keywords: 

Digital civic science, online communities, networked human capital, increased motivation to participate, collaboration, personal characteristics of participants, self-adaptive approach.

PP. 17-27.

DOI: 10.14357/20790279220403
 
References

1. Egerev S.V., Zakharova S.A. (2015) Raspredelennaya podderzhka issledovatel’skoi deyatel’nosti [Distributed support for research activities]. Naukovedcheskie issledovaniya. 93-109.
2. Kuznetsova E.V., Zhukova T.I. & Tishchenko V.I. (2020) Sovremennye praktiki issledovaniya setevoi formy chelovecheskogo kapitala [Modern research practices of the network form of human capital] Sistemnye issledovaniya. Metodologicheskie problemy. Moscow. Poli Print  Servis. 39. 320-334.
3. Prochko A.L. & Tishchenko V.I. (2018) Statisticheskii analiz kommunikatsii uchastnikovvirtual’nogo soobshchestva BOINC. RU [Statistical analysis of communication  between BOINC virtual community members] Informatsionnye tekhnologii i vychislitel’nye sistemy. 3. 80-86.
4. Yakimets V.N. & Kurochkin I.I. (2018) Indeksnaya otsenka proektov dobrovol’nykh raspredelennykh vychislenii [Index evaluation of voluntary distributed computing projects]. Informatsionnoe obshchestvo: obrazovanie, nauka, kul’tura i tekhnologii budushchego. 2. 84-96.
5. Zhukova T.I. & Tishchenko V.I. (2019) Volunteer computing in Russia: the empirical model of motivation factors for participation in VC projects. Obshchestvennye nauki i sovremennost’. 5. 86-96.
6. Zhukova T.I. & Prochko A.L. (2019) Tsifrovaya grazhdanskaya nauka: issledovanie motivatsii k uchastiyu (na primere proektov DRV) [Digital Citizen Science: A Study of the Motivation to Participate (the Example of VC Projects)]. Procedings of International scientific conference SAIT-2019 8-14. July. 2019. Irkutsk. Russia. Moscow. 353-363.
7. Diner D., Nakayama Sh., Nov O. & Porfiri M. (2018) Social signals as design interventions for enhancing citizen science contributions. Information, Communication & Society. 21(4). 594-611.
8. Zhukova T.I. (2016) Virtual’nye soobshchestva v nauchnom kommunikatsionnom prostranstve: ehmpiricheskie vyvody [Virtual Communities in the Scientific Communication Space: Empirical   Conclusions]. Trudy ISA RAN. 66(4). 69-84.
https://www.elibrary.ru/item.asp?id=28154789 (28.05.2022
9. Costa P.T. & McCrae R.R. (2008). The revised NEO personality inventory (NEO-PI-R). The SAGE Handbook of Personality Theory and Assessment. 2. 179-198.
10. Kreitler S. (2019). Towards a consensual model in personality psychology. Personality and Individual Differences. 147. 156-165.
11. Nakayama S., Torre M., Nov O. & Porfiri M. (2019). Matching individual attributes with task types in collaborative citizen science. PeerJ Computer Science. 5. e209. 1.
12. Landers R.N. & Lounsbury J.W. (2006). An investigation of Big Five and narrow personality traits in relation to Internet usage. Computers in human behavior. 22(2). 283-293.
13. Digman J. 1990. Personality Structure: Emergence of the Five-Factor Model. Annual Review of Psychology. 41(1). Р. 417-440.
14. Amiel T. & Sargent S.L. (2004). Individual differences in Internet usage motives. Computers in human behavior. 20(6). 711-726.
15. Hamburger Y.A. & Ben-Artzi E. (2000). The relationship between extraversion and neuroticism and the different uses of the Internet. Computers in human behavior. 16(4). 441-449.
16. Hvidsten A.K.N. (2016). Is introversion an obstacle in tacit knowledge sharing through socialization? A study on how personality traits influence knowledge sharing behavior. Dalhousie Journal of Interdisciplinary Management. 12(1).
17. Pour M.J. & Taheri F. (2019). Personality traits and knowledge sharing behavior in social media: mediating role of trust and subjective well-being. On the Horizon.
18. Endler N.S. & Parker J.D. (1992). Interactionism revisited: Reflections on the continuing crisis in the personality area. European Journal of personality. 6(3). 177-198.
19. Tzovaras B., Angrist M., Arvai K., Dulaney M., Estrada-Galiñanes V., Gunderson B., ... & Price Ball M. (2019). Open Humans: A platform for participant-centered research and personal data exploration. GigaScience. 8(6). giz076.
 
2024-74-2
2024-74-1
2023-73-4
2023-73-3

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".