Abstract.
In this work, for one class of weakly nonlinear systems with state-dependent coefficients, a heuristic approach to constructing a nonlinear control using dynamic feedback is considered. A feature of the problem statement is the selection of two different vectors: the system output vector and the vector of adjustable coordinates. Estimates of unmeasured variables are obtained using a full-order state observer. Numerical experiments for control of the differentially driven wheeled mobile robot were carried out. The operability and effectiveness of the proposed control algorithm were shown.
Keywords:
terminal control problem, nonlinear control, full-order state observer, SDRE technique, differentially driven wheeled mobile robot.
PP. 17-25.
DOI 10.14357/20718632200402 References
1. A. Isidori. Nonlinear Control Systems. Springer-Verlag, Berlin, 1995. 2. Khalil H. K., Grizzle J. W. Nonlinear systems. 3-ed. NJ: Prentice hall, 2002. 3. Camacho E. F., Alba C. B. Model predictive control. Springer Science & Business Media, 2013. 4. Chetverikov V. N. Flatness of dynamically linearizable systems //Differential equations. 2004. Vol. 40(12). Pp. 1747-1756. 5. Belinskaya Yu. S., Chetverikov V. N. Covering Method for Point-to-Point Control of Constrained Flat System // IFAC-Papers OnLine. 2015. Vol. 48(11). Pp. 924–929. 6. Nekoo S. R. Tutorial and Review on the State-dependent Riccati Equation //Journal of Applied Nonlinear Dynamics. 2019. Vol. 8(2). Pp. 109-166. 7. Çimen T. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis // Journal of Guidance, Control, and Dynamics. 2012. Vol. 35(4). Pp. 1025-1047. 8. Cloutier J.R. State-Dependent Riccati Equation Techniques: An Overview // Proc. American Control Conference. 1997. Vol. 2. Pp. 932-936. 9. Heydari A., Balakrishnan S.N. Path Planning Using a Novel Finite Horizon Suboptimal Controller // Journal of guidance, control, and dynamics. 2013. Vol. 36, No. 4. Pp. 1210-1214. 10. Heydari A., Balakrishnan S.N. Closed-Form Solution to Finite-Horizon Suboptimal Control of Nonlinear Systems // International Journal of Robust and Nonlinear Control. 2015. Vol. 25. No 15. Pp. 2687-2704. 11. Naidu D. S., Paul S., Rieger C. R. A Simplified SDRE Technique for Regulation in Optimal Control Systems //2019 IEEE International Conference on Electro Information Technology (EIT). IEEE, 2019. Pp. 327-332. 12. Khamis A., Naidu D.S., Kamel A.M. Nonlinear Finite-Horizon Regulation and Tracking for Systems with Incomplete State Information Using Differential State Dependent Riccati Equation // International Journal of Aero-space Engineering. Vol. 2014 (2014). 12 pages. http://dx.doi.org/10.1155/2014/178628. 13. Khamis A., Chen C. H., Naidu D. S. Tracking of a robotic hand via SD-DRE and SD-DVE strategies // Control (CONTROL), 2016 UKACC 11th International Conference on. IEEE. 2016. Pp. 1-6. 14. Dmitriev M.G., Makarov D.A. Smooth nonlinear controller in a weakly nonlinear control system with state-dependent coefficients [Gladkij nelinejnyj regulyator v slabo nelinejnoj sisteme upravleniya s koefficientami, zavisyashchimi ot sostoyaniya]. // Proceedings of the Institute for System Analysis of RAN [Trudy Instituta sistemnogo analiza RAN]. 2014. Vol. 64(4). Pp. 53-58. In Russian. 15. Makarov D.A. Podhod k postroeniyu nelinejnogo upravleniya v zadache slezheniya s koehfficientami, zavisyashchimi ot sostoyaniya CHast' I. Algoritm [A non-linear approach to a feedback control design for a tracking state-dependent problem. I. An algorithm]. Informacionnye tekhnologii i vychislitel'nye sistemy [Information technology and computer systems]. 2017. No. 3. Pp. 10-19. In Russian. 16. Makarov D.A. Postroenie upravleniya i nablyudatelya v slabo nelinejnoj zadache slezheniya s pomoshch'yu differencial'nyh matrichnyh uravnenij Rikkati [The design of observer based tracking control for weakly nonlinear systems using differential matrix equations Riccati]. Informacionnye tekhnologii i vychislitel'nye sistemy [Information technology and computer systems]. 2018. No 4. Pp. 63-71. In Russian. 17. Makarov D.A. The simulation of observer based tracking control for the model of the longitudinal dynamics of a vertical takeoff and landing aircraft [CHislennoe modelirovanie sledyashchego upravleniya s nablyudeniem dlya modeli prodol'noj dinamiki samoleta vertikal'nogo vzleta i posadk]. Mathematics and Mathematical Modeling [Matematika i matematicheskoe modelirovanie]. 2018. No 6. Pp. 72-87. In Russian. 18. Dmitriev M. G., Makarov D. A. The stabilizing composite control in a weakly nonlinear singularly perturbed control system // Proceedings of 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia. 2017. Pp. 589-594, doi: 10.1109/ICSTCC.2017.8107099. 19. H. Kwakernaak, R. Sivan. Linear Optimal Control Systems. New York: Wiley-Interscience. 1972. 600 p. 20. B.T. Polyak, M.V. Khlebnikov, L.B. Rapoport. Mathematical theory of automatic control: Textbook [Matematicheskaya teoriya avtomaticheskogo upravleniya: Uchebnoe posobie]. Moscow: LENAND, 2019. 504 p. (in Russian). 21. Dmitriev M. G., Makarov D. A. The stabilizing composite control in a weakly nonlinear singularly perturbed control system // Proceedings of 21st International Conference on System Theory, Control and Computing (ICSTCC), Sinaia. 2017. Pp. 589-594, doi: 10.1109/ICSTCC.2017.8107099. 22. Tang C. P. Differential flatness-based kinematic and dynamic control of a differentially driven wheeled mobile robot //2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2009. Pp. 2267-2272.
|