COMPUTING SYSTEMS AND NETWORKS
O. Yu. Pershin, A. A. Mukhtarov, V. M. Vishnevsky, A. A. Larionov Optimal Placement of Base Stations as Part of an Integrated Design of a Wireless Network
DATA PROCESSING AND ANALYSIS
CONTROL AND DECISION-MAKING
SOFTWARE ENGINEERING
O. Yu. Pershin, A. A. Mukhtarov, V. M. Vishnevsky, A. A. Larionov Optimal Placement of Base Stations as Part of an Integrated Design of a Wireless Network
Abstract.

The article discusses the topology synthesis problem as a part of the integrated design of  wireless communication networks. The main result of the paper is the development of an iterative  method for placing base stations. The base station placement problem is formulated as an extremal  problem on a finite set in the form of a special combinatorial model. The special algorithm of the  branch and bound method is presented in the paper to solve the problem. The algorithm considers the  specifics of the placement of the wireless network equipment. The method technique is proposed for  obtaining a sequence of base station placement topology. 

Keywords:

wireless network design, base stations placement, branch and bound, sequence solutions  construction. 

PP. 12-25.

DOI 10.14357/20718632220102 
 
References

1. Vishnevskiy V.M. Teoreticheskiye osnovy proyektirovaniya komp'yuternykh setey / V.M. Vishnevskiy. – M.: Tekhnosfera, 2003. – 512p
2. Guerna A., Bitam S., Calafate C. T. AC-RDV: a novel ant colony system for roadside units deployment in vehicular ad hoc networks // Peer-to-Peer Netw. Appl. 2021. Т. 14. №2. С. 627–643.
3. Gao Z. et. al. Optimal and Greedy Algorithms for the One-Dimensional RSU Deployment Problem with New Model // IEEE Trans. Veh. Technol. 2018. Т. 67. № 8. С. 7643–7657.
4. Jalooli A., Song M., Wang W. Message coverage maximi-zation in infrastructure-based urban vehicular networks // Veh. Commun. 2019. Т. 16. С. 1–14.
5. Mavromatis I. et. al. Efficient millimeter-wave infrastruc-ture placement for city-scale ITS // IEEE Veh. Technol. Conf. 2019. Т. 2019- April.
6. Amine O. M., Khireddine A. Base station placement optimi-sation using genetic algorithms approach // Int. J. Comput. Aided Eng. Technol. 2019. Т. 11. № 6. p. 635–652.
7. Skakov E. S. et al. Bee Optimization Algorithm for Solv-ing the Problem of Planning a Wireless Network // International Journal "Software Products and Systems". 2016. V. 32. P. 67–73.
8. Chirkova, Yu. V. The problem of choosing and placing base stations in a wireless network / Yu. V. Chirkova // Management of large systems: a collection of works. - 2020. - No. 87. - P. 26-46.
9. Liu C., Huang H., Du H. Optimal RSUs deployment with delay bound along highways in VANET // J. Comb. Optim. 2017. Т. 33. № 4. С. 1168–1182.
10. Lazareva B. E., Larionov A. A., Mukhtarov A. A. The cal-culation of end-to-end delays and queue sizes in a tandem network using machine learning methods / Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (Moscow, 2020). M.: RUDN, 2020. p. 43-48.
11. Vishnevsky V. M., Larionov A. A., Mukhtarov A. A. Cal-culation of a tandem network performance characteristics with fixed incoming packet size using machine learning / ICAM (ICAM 2020, Tomsk). p. 82.
12. Larionov A. et al. A Multiphase Queueing Model for Performance Analysis of a Multi-hop IEEE 802.11 Wireless Network with DCF Channel Access // IEEE Transactions on Wireless Communications, 2019. p. 162–176.
13. Kozyrev D., Radkevich D. Reliability estimation of a broadband wireless network with linear topology and cross redundancy // AIP Conf. Proc. 2019. Т. 2116.
14. Vishnevsky V. et al. Estimation of IEEE 802.11 DCF access performance in wireless networks with linear topology using PH service time approximations and MAP input // 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc. 2019.
15. Kim J. et al. Analysis of a semi-open queueing network with Markovian arrival process // Perform. Eval. 2018. Т. 120. p. 1–19.16. Ivanov R., Mukhtarov A., Pershin O. A Problem of Optimal Location of Given Set of Base Stations in Wireless Networks with Linear Topology // Communications in Computer and Information Science. , 2019. p. 53–64.
17. Gary M, Johnson D. Computing machines and intractable problems. M. Mir, 1982.
18. Emelichev V.A., Komlik V.I. A method for constructing a sequence of plans for solving discrete optimization problems. M. Science. 1981.
19. Burke P. J. The Output of a Queuing System // Oper. Res. 1956. Т. 4. № 6. p. 699–704.
20. Smirnova E.V et al. Technology of modern wireless network Wi-Fi. / ed. A. V. Proletarsky. Moscow: MSTU im. N.E.Bauman, 2017.
21. Little J. D. C. A Proof for the Queuing Formula: L = λ W // Oper. Res. 1961. Т. 9. № 3. p. 383–387.
 

2024 / 02
2024 / 01
2023 / 04
2023 / 03

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".