 |
M.I. Shpitonkov The boundary conditions in the problem of correlation adaptometry |
 |
Abstract. Using the methods of evolutionary optimality settle the boundary conditions of impermeability to the diffusion model of the correlation adaptometry. Keywords: equation of Kolmogorov – Fokker – Planck, the boundary conditions of impermeability, evolutionary optimality, correlation adaptometry. PP. 111-116. DOI: 10.14357/20790279180412 References 1. Gorban’ A.N., Manchuk V.E., Petushkova E.V. Dinamika korrelyatsij mezhdu fiziologicheskimi parametrami i ekologo-evolucionnyi printsip polifaktorial’nosti [Dynamics of correlations between physiological parameters and ecological evolutionary principle of polyfactorial] // Problemy ekologicheskogo monitoringa I modelirovanie ekosistem [Ecological monitoring problems and ecosystems modeling]. – 1987. – V10. – P.187-198. 2. Svetlichhaya G.N., Smirnova E.V., Pokidysheva L.I. Korrelyatsionnaya adaptometriya kak metod otsenki kardio-vaskulyarnogo I respiratornogo vzaimodejstviya [Correlation adaptometry as a method of evaluating cardiovascular and respiratory interaction] // Human physiology. – 1997. – Vol.23, No. 3. – P. 58–62. 3. Smirnova E.V., Cheusova E.P., Zajtseva O.I. Otsenka effektivnosti provodimoj terapii metodom korrelyatsionnaoj adaptometrii [Evaluation of the therapy effectiveness by the correlation adaptometry techknique]. Trudy 2 Nauchno-practicheskoj konferentsii “Problemy informatizatsii goroda“ [Proc. 2th scientific – practical conference “Problems of the city informatization “]. – Krasnoyarsk, 1995. – P.106-108. 4. Strygina S.O., Dement’ev S.N., Uskov V.M., Chernyshov G.I. Dinamika sistemy korrelyatsionnykh vzaimodejstvij mezhdu fiziologicheskimi parametrami bol’nykh infarktom miokarda [The dynamics of the system correlation in-teractions between physiological parameters of patients with myocardial infarction]. Trudy konferentsii Matematika, komp’yuter, obrazovanie [Proc. conference “Mathematics, computer, education”]. – Dubna, 2000. – issue 7. – P.685-689. 5. Prugov P.V., Boloshenko E.V., Mansurova T.P., Nefedov V.P. Otsenka effektivnosti ispol’zovaniya klofelina c pomoshch’yu metoda korrelyatsionnaoj adaptometrii [Evaluation of effectiveness to use of clonidine by the correla-tion adaptometry technique]. Trudy VIII Vserossijskogo s’ezda anesteziologov-reanimatologov [Proc. of the VIII all-Russian Congress of anaesthesiologists]. – Omsk, 2002. – P.43-48. 6. Masaev S.N., Dorrer M.G. Otsenka sistemy upravleniya kompaniej na osnove metoda adaptastionnoj korrelyatsii k vneshnej srede [Assessment of the company’s management system based on the method of adaptive correlation to the environment]. // Control Problems. – 2010. – No. 5. – P. 45–50. 7. Gorban A.N., Smirnova E.V., Tyukina T.A. Correlations, Risk and Crisis: from Phisiology to Finance, Physica A, Vol.389, Issue 16, 2010, p. 3193-3217. 8. Vasil’ev A.V., Mal’tsev G. Yu., Khrushcheva Yu. V., Razhevajkin V.N., Shpitonkov M.I. Primenenie metoda korrelyatsionnaoj adaptometrii dlya otsenki effektivnosti lecheniya bol’nykh ozhireniem [Application of correlation adaptometry technique to assess the effectiveness of treatment of patients with obesity] // The nutriation issues. – 2007. – Vol. 76, No. 2. – P. 36–38. 9. Razhevajkin V.N., Shpitonkov M.I., Gerasimov A.N. Primenenie metoda korrelyatsionnaoj adaptometrii v medico-biologicheskikh zadachakh [Application of the correlation adaptometry technique to biomedical tasks] // Trudy CCRAS Issledovanie operatsij (modeli, sistemy, resheniya) [Operations research (models, systems, solutions)]. – 2002. – P. 51-55. 10. Shpitonkov M.I. Korrelyatsionnaua adaptometriua. Otsenki effektivnosti primeneniya dietoterapii. // Trudy ISA RAS, 2014, v.64, the issue 3, p. 60-63. 11. Razhevajkin V.N., Shpitonkov M.I. Korrelyatsionnaua adaptometriua. Modeli I prilozheniya k biomeditsinskim sis-temam [Correlation adaptometry. Models and applications to biomedical systems] // Mathematical modeling. – 2008. – Vol. 20, No. 8. – P. 13–27. 12. Kato T. Teoriya vozmushchenii linejnykh operatorov. [Perturbation theory of linear operators.]. Moscow: The world, 1973, 740 p.
|