Methods and models in economy
Recognition of images
General systems theory
Scientometrics and management science
Optimization, identification, the theory of games
Cognitive technology
S.N. Enikolopov, Y.M. Kuznetsova, A.N. Minin, M.Y. Penkina, I.V. Smirnov, M.A. Stankevich, N.V. Chudova Text features and psychological characteristics: an empirical study of computer
S.N. Enikolopov, Y.M. Kuznetsova, A.N. Minin, M.Y. Penkina, I.V. Smirnov, M.A. Stankevich, N.V. Chudova Text features and psychological characteristics: an empirical study of computer

Abstract.

The work is devoted to the identification of links between the automatically distinguished features of the text and the autor’s psychological characteristics. On the basis of the analysis of works carried out in Russia and in the world, and on the results of our study, it is proposed to consider the system of automatic text analysis as research tools for a work of a psychologist with large text corpora. The results of a study conducted using the linguistic analyzer PLATIn, developed on the basis of the processor Exactus Expert in ISA RAS, are presented. The study included psycholinguistic and lexical-frequency analysis of texts created by the subjects (142 people, students and adults, Moscow and Kurgan), who underwent psychodiagnostic examination. The lexical analysis was based on the specially designed dictionaries of emotional topics (about 53 thousand lexical units). The analysis of correlations between the text parameters (12 psycholinguistic and 30 lexical) and the psychodiagnostic parameters (81 scales of 10 questionnaires) was carried out. The study showed the sensitivity of the lexical and psycholinguistic parameters to some psychological characteristics. The conclusion about the expediency of the automatic text analysis in psychological population studies is made.

Keywords:

network psychodiagnostics, automatic text analysis, psycholinguistic indicators, emotive vocabulary, psychological features of author.

PP. 91-99.

DOI: 10.14357/20790279190308

References 

1. Alefirenko N. Teoriya yazyka: vvedenie v obshchee yazykoznanie. Volgograd: Peremena. 1987.
2. Vasil’ev L.M. Sovremennaya lingvisticheskaya semantika. M.: Vysshaya shkola, 1990. Р. 101-103
3. Devyatkin D.A., Kuznecova YU.M., CHudova N.V., SHvec A.V. Intellektual’nyj analiz proyavlenij verbal’noj agressivnosti v tekstah setevyh soobshchestv // Iskusstvennyj intellekt i prinyatie reshenij. 2014. № 2. Р. 95-109.
4. Zevahina T.S., Olejnikova E.E. Analiticheskoe annotirovanie tekstov SMI: Cennosti i ocenki // http://www.dialog-21.ru/digests/dialog2006/ materials/pdf/ZevakhinaT.pdf.
5. Zeleneckij A.L., Novozhilova O.V. Teoriya nemeckogo yazykoznaniya. M.: Nauka. 1982. Р. 277.
6. Korabel’nikova E.A., Vejn A.M., Golubev V.L., Krejnes M.G. Psiholingvisticheskoe issledovanie snovidenij detej i podrostkov s nevroticheskimi rasstrojstvami // ZHurnal nevrologii i psihiatrii. 1999. № 1. Р. 18-21.
7. Korpusnoe issledovanie ustnogo russkogo diskursa / Pod red. A.A.Kibrika i V.I.Podlesskoj. M.: YAzyki slavyanskih kul’tur, 2009.
8. Ledovaya YA.A., Tihonov R.V., Bogolyubova O.N. Social’nye seti kak novaya sreda dlya mezhdisciplinarnyh issledovanij povedeniya cheloveka // Vestnik SPb. un-ta. Ser. 16. Psihologiya. Pedagogika. 2017. T. 7. Vyp. 3. Р. 193-210
9. Litvinova T.A., Litvinova O.A., Ryzhkova E.S., Biryukova E.D., Seredin P.V., Zagorovskaya O.V. Issledovanie vliyaniya pola i psihologicheskih harakteristik avtora na kolichestvennye parametry ego teksta s ispol’zovaniem programmy Linguistic Inquiry and Word Count // Nauchnyj dialog. 2015. № 12 (48). Р. 101-109.
10. Litvinova T.A., Seredin P.V. Issledovanie dinamiki idiostilya suicidenta // Izvestiya VGPU. 2017. № 3 (276). Р. 150-154.
11. Rusnachenko N.L., Lukashevich N.V. Metody integracii leksikonov v mashinnoe obuchenie dlya sistem analiza tonal’nosti // Iskusstvennyj intellekt i prinyatie reshenij. 2017. № 2. Р. 78-89
12. Tihomirov I.A., Smirnov I.V., Sochenkov I.V., Devyatkin DA.., SHelmanov A.O., Zubarev D.V., SHvec A.V., Leshkin A.V., Suvorov R.E. Exactus Expert: Poiskovo-analiticheskaya sistema podderzhki nauchno-tekhnicheskoj deyatel’nosti // Trudy trinadcatoj nacional’noj konferencii po iskusstvennomu intellektu s mezhdunarodnym uchastiem KII-2012. B.: BGTU. 2012. Tom 4. Р. 100-108.
13. Ahmad, N., & Siddique, J. Personality Assessment using Twitter Tweets // 21st International Conference on Knowledge Based and Intelligent Information and Engineering Systems, KES2017, 6-8 September 2017, Marseille, France. Procedia Computer Science. 2017. 112. Р. 1964–1973.
14. Caplan, J., Adams, K., & Boyd, R. Language and personality. The Wiley-Blackwell Encyclopedia of Personality and Individual Differences. 2017. URL: https://www.researchgate.net/publication/315671233.
15. Guntuku, S.C., Yaden, D.B., Kern, M.L., Ungar, L.H., & Eichstaedt J.C. Detecting depression and mental illness on social media: an integrative review // Current Opinion in Behavioral Sciences 2017. 18. Р. 43–49.
16. Kern, M.L., Park, G., Eichstaedt, J.C., Schwartz, H.A., Sap, M., Smith, L.K., & Ungar, L.H. Gaining Insights From Social Media Language: Methodologies and Challenges // Psychological Methods, 2016. URL: http://dx.doi.org/10.1037/met0000091.
17. Osipov G., Smirnov I., Tikhomirov I., Shelmanov A. Relational-Situational Method for Intelligent Search and Analysis of Scientific Publications // Proceedings of the Integrating IR technologies for Professional Search Workshop. Moscow, 2013. P. 57-64
18. Pennebaker J, Boyd R, Jordan K, Blackburn K. The development and psychometric properties of LIWC2015. 2015. URL: https://repositories. lib.utexas.edu/bitstream/handle/2152/31333/ LIWC2015_LanguageManual.pdf.
19. Pennebaker, J.W. Mind mapping: Using everyday language to explore social & psychological processes // Procedia Computer Science, 2017, 118: 100–107. URL: https://utexas.influuent. utsystem.edu/en/publications/mind-mappingusing-everyday-language-to-explore-social-amppsycho.
20. Tandera, T., Hendro, Suhartono, D., Wongso, R., & Prasetio, Y.L. Personality Prediction System from Facebook Users // Procedia Computer Science. 2017. 116. Р. 604–611.
21. Ziemer, K.S., & Korkmaz, G. Using text to predict psychological and physical health: A comparison of human raters and computerized text analysis // Computers in Human Behavior. 2017. 76. Р. 122-127.
 

 

2022-72-2
2022-72-1
2021-71-4
2021-71-3

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".