MATHEMATICAL MODELING
Information Technology
E.S. Soldatov Sensor network for monitoring the state of cryogenic equipment in an industrial cluster
Cognitive technology
Methods and models in economy
Community informatics and the formation of social networking
E.S. Soldatov Sensor network for monitoring the state of cryogenic equipment in an industrial cluster
Abstract. 

The article presents the structure of the original sensor network for monitoring the state of cryogenic equipment in an industrial cluster, implemented on the basis of the concept of the Internet of Things, which implements advanced achievements in the field of technologies for energy-efficient wireless data networks used in industrial monitoring systems. The technologies for remote monitoring of the state of cryogenic equipment are characterized and the expediency of using low-power sensor networks based on long-range modules designed to send small data packets powered by batteries that do not require recharging and maintenance for several years is substantiated. A functional model for monitoring the state of cryogenic capacitive equipment has been developed, and the decomposition of the monitoring process into key operations has been shown. The implementation of network monitoring of stationary and transport cryogenic equipment based on low-power autonomous telemetry modules is described. A schematic diagram of an autonomous telemetry device for a cryogenic transport tank container based on a long-range module is proposed, the use of which allows solving the problem of organizing remote monitoring of the state of transport cryogenic vessels at the level of an industrial cluster.

Keywords: 

remote monitoring, tank container, LoRa, LoRaWAN, Internet of Things, non-drainage storage.

PP. 28-35.

DOI: 10.14357/20790279230404 

EDN: WQCGLI
 
References

1. Soldatov, E., Bogomolov, A. 2022. Issues of Energy-Efficient Storage of Fuel in Multimodal Transport Units. Smart Innovation, Systems and Technologies. 232: 393-402.
2. Bo, W., Ruoyin, L., Hong, C., et al. 2021. Characterization and Monitoring of Vacuum Pressure of Tank Containers with Multilayer Insulation for Cryogenic Clean Fuels Storage and Transportation. Applied Thermal Engineering. 187: 116569.
3. Kang, H., Sung, S., Hong, J., Jung, S., Hong, T., Park, H. S., Lee, D.-E. 2020. Development of a realtime automated monitoring system for managing the hazardous environmental pollutants at the construction site. Journal of Hazardous Materials, 123483. doi:10.1016/j.jhazmat.2020.123483.
4. Santos Filho, F. H. C. dos, Dester, P. S., Stancanelli, E. M. G., Cardieri, P., Nardelli, P. H. J., Carrillo, D., Alves, H. 2020. Performance of LoRaWAN for Handling Telemetry and Alarm Messages in Industrial Applications. Sensors, 20(11), 3061. DOI:10.3390/s20113061.
5. Luvisotto, M., Tramarin, F., Vangelista, L., Vitturi, S. 2018. On the Use of LoRaWAN for Indoor Industrial IoT Applications. Wireless Communications and Mobile Computing, 2018, 1–11. DOI: 10.1155/2018/3982646.
6. Ronzhin, A.L., Zelentsov, V.A., Bogomolov, A.V., Kuleshov, S.V. Tekhnologii vizualizatsii, obrabotki prostranstvennykh dannykh, monitoringa i proaktivnogo upravleniya razvitiyem ekosistem severo-zapadnogo regiona [Technologies for visualization, processing of spatial data, monitoring and proactive management of the development of ecosystems in the northwestern region]. In: Information technology and high performance computing. Materials of the VI International Scientific and Practical Conference. Khabarovsk, 2021. 207-213.
7. Boykova, A.V., Samylina. Yu.N. Voprosy ispol’zovaniya interneta veshchey na promyshlennykh predpriyatiyakh [Issues of using the Internet of things in industrial enterprises]. In: Interdisciplinary studies of economic systems. Materials of the All-Russian scientific-practical conference. Tver, 2022. 184-187.
8. Kirimtat, A., Krejcar, O., Kertesz, A., Tasgetiren. M. 2020. Future Trends and Current State of Smart City Concepts: A Survey. IEEE Access, 8, 86448–86467. DOI: 10.1109/access.2020.2992441.
9. Tuysuz, M., Trestian, R. 2020. From serendipity to sustainable green IoT: Technical, industrial and political perspective. Computer Networks, 107469. DOI: 10.1016/j.comnet.2020.107469.
10. Golosovsky, M.S., Bogomolov, A.V., Tobin, D.S. Algoritm nastroyki sistem nechotkogo logicheskogo vyvoda na osnove statisticheskikh dannykh [Algorithm for setting fuzzy inference systems based on statistical data]. Scientific and technical information. Series 2: Information Processes and Systems. 2023. 1: 1-9. DOI: 10.36535/0548-0027-2023-01-1.
11. Vitturi, S., Zunino, C., Sauter, T. 2019. Industrial Communication Systems and Their FutureChallenges: Next-Generation Ethernet, IIoT, and 5G. Proceedings of the IEEE, 1–18. DOI: 10.1109/jproc.2019.2913443.
12. Augustin, A., Yi, J., Clausen, T., Townsley, W. 2016. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, 16(9), 1466. DOI: 10.3390/s16091466.
13. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. 2015. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. DOI: 10.1109/comst.2015.2444095.
14. Hasan, N., Kadhim, F. 2019. Solving Isolated Nodes Problem in ZigBee Pro for Wireless Sensor Networks. Cihan University-Erbil Scientific Journal 3(2): 31-36. DOI: 10.24086/cuesj.v3n2y2019.pp31-36.
15. Ebrakhim, A., Ivanov, I.A., Ali, A. Obzor tekhnologiy LPWAN v Rossii i v mire [Overview of LPWAN technologies in Russia and in the world]. In: Innovative, information and communication technologies. Proceedings of the XIX International Scientific and Practical Conference. S.U. Uvaysov (ed.). Moscow. 2022. 155-162.
16. Mikhaylov, P.G., Zikirbay, K., Bazarbay, L., Baktybayev, M.K., Alimbayev, S. Internet energeticheskikh veshchey na osnove besprovodnogo LPWAN [Internet of energy things based on wireless LPWAN]. XXI century: results of the past and problems of the present plus. 2021. Vol. 10. No. 3 (55). 47-52. DOI: 10.46548/21vek-2021-1055-0008.
17. Tramarin, F., Mok, A., Han, S. 2019. Real-Time and Reliable Industrial Control Over Wireless LANs: Algorithms, Protocols, and Future Directions. Proceedings of the IEEE, 1–26. DOI: 10.1109/jproc.2019.2913450.
18. Fedullo, T., Morato, A., Peserico, G., Trevisan, L., Tramarin, F., Vitturi, S., Rovati, L. 2022. An IoT Measurement System Based on LoRaWAN for Additive Manufacturing. Sensors 2022, 22(15), 5466. DOI: 10.3390/s22155466.
19. Hoang, Q. L., Jung, W.-S., Yoon, T., Yoo, D., Oh, H. 2020. A Real-Time LoRa Protocol for Industrial Monitoring and Control Systems. IEEE Access, 8: 44727–44738. DOI: 10.1109/access.2020.2977659.
20. Faber, M., Zwaag, K., Dos Santos, W., Rocha, H., Segatto, M., Silva, J. 2020. A Theoretical and Experimental Evaluation on the Performance of LoRa Technology. IEEE Sensors Journal, 1–1. DOI: 10.1109/jsen.2020.2987776.
21. Niles, K., Ray, J., Niles, K., Maxwell, A., Netchaev, A. 2021. Monitoring for Analytes through LoRa and LoRaWAN Technology. Procedia Computer Science, 185: 152–159. DOI: 10.1016/j.procs.2021.05.041.
22. Optimize Petroleum Gas Management with Lora Devices. Доступен по ссылке: https://www.
semtech.com/company/press/semtech-and-aiutoptimize-petroleum-gas-management-with-loradevices (дата обращения: 18.07.2023).
23. Soldatov, A.S., Soldatov, E.S. 2023. Controlling the Equipment State throughout the Industrial Life Cycle of the Product Using Digital Twin. In: Silhavy, R., Silhavy, P. (eds) Software Engineering Research in System Science. CSOC 2023. Lecture Notes in Networks and Systems, vol. 722. Springer, Cham. DOI: 10.1007/978-3- 031-35311-6_60.
24. Soldatov, E., Bogomolov, A. 2021. Decision support models and algorithms for remote monitoring of the equipment state. CEUR Workshop Proceedings. Iss. “ITIDMS 2021 - Proceedings of the International Scientific and Practical Conference “Information Technologies and Intelligent Decision Making Systems””: 1–8.
 

2024-74-1
2023-73-4
2023-73-3
2023-73-2

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".