INTELLIGENCE SYSTEMS AND TECHNOLOGIES
COMPUTING SYSTEMS AND NETWORKS
MATHEMATICAL MODELING
V. D. Ilyin S-Modeling: an Introduction to Updated Theory
V. D. Ilyin S-Modeling: an Introduction to Updated Theory
Abstract. 

The review describes the basics of updated theory of symbolic modeling of arbitrary objects in a human-machine environment (S-modeling). The theory of S-modeling includes languages for a formalized description of an extensible system of S-modeling notions, a description of the core of this system and classes of basic tasks for constructing and manipulating S-models. The theory of S-modeling is considered as a methodological platform for the scientifically based development of information technologies and the human-machine environment of S-modeling and digitalization of various types of activities (Senvironment). S-modeling uses all kinds of symbols (audio, visual, etc.) implementable in the Senvironment. S-models are studied as entities having three interrelated representations in the S-environment: symbolic, code and signal. The construction of S-models is carried out according to the rules corresponding to the classes of basic S-modeling tasks. The typing of s-modeled objects is defined. Refined definitions of classes of basic S-modeling tasks are given.

Keywords: 

Symbolic Modeling (S-modeling), S-modeling Theory, S-symbol, S-code, S-signal, S-environment, Basic Tasks of S-modeling.

PP. 62-68.

DOI 10.14357/20718632220406
 
References

1. Newell, A., and H. Simon. 1976. Computer science as empirical inquiry: symbols and search. Communications of the ACM. 19(3):113–126. doi: 10.1145/360018.360022.
2. Ilyin, V. D. 1989. Sistema porozhdeniya programm [The system of program generating]. Moscow: Nauka, 264 p.
3. Ilyin, V. D. 2017. Simvol’noye modelirovaniye (S-modelirovaniye) [Symbolic modeling (S-modeling)]. Bol’shaya rossiyskaya entsiklopediya – elektronnaya versiya [The Great Russian Encyclopedia – electronic version].
Available at: https://bigenc.ru/technology_and_technique/text/4010980 (accessed July 21, 2022).
4. Ilyin, A. V., and V. D. Ilyin. 2009. Osnovy teorii s-modelirovaniya [Fundamentals of the theory of S-modeling]. Moscow: Institute of Informatics Problems of the Russian Academy of Sciences. 143 p. Available at:
https://www.elibrary.ru/item.asp?id=25784971 (accessed July 21, 2022).
5. Ilyin, A. V., and V. D. Ilyin. 2012. S-modelirovaniye zadach i konstruirovaniye programm [S-modeling of tasks and construction of programs]. Moscow: Institute of Informatics
Problems of the Russian Academy of Sciences. 146 p. Available
at: https://www.elibrary.ru/item.asp?id=25816802 (accessed July 21, 2022).
6. Ilyin, V. D. 1995. A methodology for knowledge based engineering of parallel program systems. In: Forsyth, G., Moonis, A. (eds.) The Eighth International Conference Industrial and Engineering Applications of Artificial Intelligence and Expert Systems , IEA/AIE 95, Melbourne, Australia, 6–8 June, 1995. Gordon and Breach. 805–809.
7. Ilyin, A. V., and V. D. Ilyin, 2021. Updated Methodology for Task Knowledge Based Development of Parallel Programs. In: Silhavy R., Silhavy P., Prokopova Z. (eds.) Data Science and Intelligent Systems. CoMeSySo 2021. Lecture Notes in Networks and Systems. Vol 231. Springer, Cham. 319–328. doi: 10.1007/978-3-030-90321-3_25.
8. Licklider, J., and W. Clark. 1962. On-line man-computer communication. In: AIEE-IRE ‘62 (Spring) Proceedings of the May 1-3, 1962, spring joint computer conference. 113–128.
9. Cerf, V., and R. Kahn. 1974. A Protocol for Packet Network Intercommunication. IEEE Transactions on Communications. 22(5):637–648. doi: 10.1109/TCOM.1974.1092259.
10. Jamsa, K. 2013. Cloud computing. Jones & Bartlett, Learning Burlington. 322 p.
11. Kay, A. 1975. Personal Computing. Palo Alto: Learning Research Group. Xerox Palo Alto Research Center. 30 p.
12. Berners-Lee, T. 1989. Information Management: A Proposal. CERN. Available at:
https://www.w3.org/History/1989/proposal-msw.html (accessed July 21, 2022).
13. Berners-Lee, T. 2010. Long live the Web. Scientific American 303(6). Available at:
https://www.scientificamerican.com/article/long-live-theweb/ (accessed July 21, 2022).
14. Kim, R. 2011. Efficient wireless communications schemes for machine to machine communications. Comm. Com. Inf. Sc. 181(3):313–323.
15. Lien, S., T. Liau, C. Kao, and K. Chen. 2012. Cooperative access class barring for machine-to-machine communications. IEEE T. Wirel. Commun. 11(1):27–32.
16. Pereyra, C., C. Liu, and S. Jayawardena. 2015. The emerging Internet of Things marketplace from an industrial perspective: A survey. IEEE T. Emerging Topics Computing 3(4):585–598. doi: 10.1109/TETC.2015.2390034.
17. Kravchenko, V., and D. Shirapov. 2018. Logic-Functional Modeling of Nonlinear Radio Engineering Systems. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). IEEE. 1–6. doi: 10.1109/FarEastCon.2018.8602769.
18. Rojek, I., D. Mikołajewski, et al. 2020. Digital Twins in Product Lifecycle for Sustainability in Manufacturing and Maintenance. Applied Sciences 11(1):31. DOI: 10.3390/app11010031.
19. Semeraro, C., M. Lezoche, et al. 2021. Digital twin paradigm: A systematic literature review. Computers in Industry 130:103469. DOI: 10.1016/j.compind.2021.103469.
20. Liu, K., L. Lei Song, et al. 2022. Time-Varying Error Prediction and Compensation for Movement Axis of CNC Machine Tool Based on Digital Twin. Industrial Informatics IEEE Transactions on 18(1):109–118. doi: 10.1109/TII.2021.3073649.
21. Nguyen, H., R. Trestian, et al. 2021. Digital Twin for 5G and Beyond. IEEE Communications Magazine 59(2):10–15. doi: 10.1109/MCOM.001.2000343.
22. Jia, P., X. Wang, et al. 2021. Digital-Twin-Enabled Intelligent Distributed Clock Synchronization in Industrial IoT Systems. IEEE Internet of Things Journal 8(6):4548–4559. doi: 10.1109/JIOT.2020.3029131.
23. Rathore, M., S. Shah, et al. 2021. The Role of AI, Machine Learning, and Big Data in Digital Twinning: A Systematic Literature Review, Challenges, and Opportunities. IEEE Access 9: 32030–32052. doi: 10.1109/ACCESS.2021.3060863.
24. Zhang, S., C. Kang, et al. 2020. A Product Quality Monitor Model With the Digital Twin Model and the Stacked Auto Encoder. IEEE Access 8: 113826–113836. doi: 10.1109/ACCESS.2020.3003723.
25. Yang, B., R. Huang, et al. 2021. Efficient Lattice-Based Cryptosystems with Key Dependent Message Security. Applied Sciences 11(24):12161. doi: 10.3390/app112412161.
26. Lu, X., F. Wang, et al. 2021. A Universal Malicious Documents Static Detection Framework Based on Feature Generalization. Applied Sciences 11(24):12134. doi: 10.3390/app112412134
 

2024 / 03
2024 / 02
2024 / 01
2023 / 04

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".