MATHEMATICAL MODELING
Yu.S. Popkov Dynamic model of migrative interaction of the regional systems with entropy operator
System diagnostics of socio-economic processes
Economic problems of natural monopolies
Evaluation of the effectiveness of investment projects
Yu.S. Popkov Dynamic model of migrative interaction of the regional systems with entropy operator

Abstract.

The dynamic model of migrative interaction of the regional systems with entropy operator is developed. Existing and uniqueness conditions are formulated. Example of migrative interaction is considered.

Keywords:

migration, mobility, prior probability, dynamic system, stsbility, singular points.

PP. 3-11. 

DOI: 10.14357/20790279180301

References

1. Zelinsky W. The hypothesis of the Mobility Transition. Geographic Review, v.46,p.219-249.
2. Bilecen B., Van Mol C. Introduction international academic mobility and inequalities. Journal of Ethic and Migration Studies, 2017, v.43(8), p.1241-1255.
3. Weidlich W. Sociodynamics. Harwood Academic Publishers, 2000, 456 p.
4. Popkov Yu.S. Theory of dynamic entropy-operator systems and its applications. Automation and Remote Control, 2006,v.67, issue 6, p.900-926.
5. van der Knaap G.A., Steegers W.F. Structural Analysisof Interregional and Intraregional Migration Patterns. In: Heide H., Willekens F. Demographic Research and Spatial Policy. Academic Press, 1984, p. 123-134.
6. Pan J., Nagurney A. Using Markov chains to model human migration in a network equilibrium framework. Mathematical and Computer Modelling, 1994, v.19, is. 11, p.31-39.
7. Rogers A., Willekens F., Raymer J. Modelling Interregional Migration Flows: Continuity and Change. Journal of Mathematical Population Studies, 2001,v.9,is. 3-4, p.231-263.
8. Rogers A., Little J., Raymer J. The Indirect Estimation of Migration: Methods for dealing with irregular, inadequate, and missing data. 2010, Springer, Dordrecht.
9. Black R., Xiang B.,Caller M., Engberson G., Heering L., Markova E. Migration and Development causes and consequences. In: Penninx R., Berger M., Kraal K. (eds) The dynamicsof international migration and settlement in Europe: a state of the art. Amsterdam, 2006, Amsterdam University Press, p.41-63.
10. Volpert V., Petrovskii S., Zincenko A. Interaction of human migration and wealth distribution. Nonliner Analysis: Hybrid Systems, 2017, v 150, p.408-423.
11. Klabunde A., Zinn S., Willekens F., Leuchter M., Multistable Modelling extended by behavioural rules. An application to migration. Population Studies 71 (Special Issue),2017, p.61-67.
12. Klabunde A., Willekens F. Decision-making in agent-based models of migration state of the art and challenges. European Journal of Population, 2016, v.32(1), p.73-97.
13. Popkov Yu.S. Mathematical Demoeconomics: Integrative Demographic and Economic Approach. De Gruyter, 2014, Berlin.
14. Wilson A.G. Entropy in Urban and Regional modelling. Pion Ltd, 1970, London.
15. Imelbayev Sh.S., Shmulyan B.L.Modeling of stochastic comunication systes. In: A.G. Wilson “Entropy methods of modelling of complex sysytems, Nauka, 1975, с.170-234.
16. Popkov Yu.S. Macrosystems Theory and its Applications. Springer, NY, 1995, p.322.
17. Krasnoselsky M.A., et all Priblisenie resheniya operatornih uravnenii, M., “Nauka”, 1969, 345с.
18. Wilkinson J.H. The algebraic eigenvalue problem, 1965, Clarendon Press, Oxford, 564p.
 

2024-74-3
2024-74-2
2024-74-1
2023-73-4

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".