Mathematical models of socio-economic processes
L.E. Varshavsky Analysis of Socio-Economical Problems and Challenges Associated With ICT
System analysis in medicine and biology
Cognitive technology
Methods of artificial intelligence and intelligent systems
L.E. Varshavsky Analysis of Socio-Economical Problems and Challenges Associated With ICT

Abstract.

The article is devoted to a brofd spectrum of socio-economic problems and challenges associated with the rapid propagation of Information and Communication Technologies (ICT) and of technologies of artificial intellect (AI). In the beginning of the article analysis of the main trends in development of microelectronic base of ICT and AI is carried out. National strategies of the leading ICT states in the field of artificial intellect (AI) are analyzed. The great attention is paid to discussing socio-economic consequences of replacing labor with AI. Some results of the articles and reports of academic and consulting organizations are analyzed. In order to mitigate negative consequences of AI’ use on society it is proposed to work out legal basis and codex of ethics for developers and consumers of AI’ technologies.

Keywords:

information and communication technologies, artificial intelligence, development, labor market

PP. 3-16.

DOI: 10.14357/20790279190101

References

1. Dubinina M.G. 2015. Modelirovanie dinamiki vzaimosvâzi makroèkonomičeskih pokazatelej i pokazatelej rasprostraneniâ IT v razvityh i razvivaûŝihsâ stranah[Modeling the dynamics of the relationship of macroeconomic indicators and indicators of IT penetration in developed and developing countries ] // Trudy ISА RАN [ Proceeding of the ISA RAS]. vol.65, no. 1: 24-37.

2. Varshavsky L.E. 2010. Krizis finansovoj sistemy i ehvolyutsiya tovarnykh rynkov [Crisis of Financial system and Evolution of Commodities Market]// Prikladnaya ehkonometrika [Applied Econometrics]. vol.17, no. 1: 30-44.

3. Varshavsky L.E. 2017. Modelirovanie dinamiki klyuchevykh pokazatelej rynkov komponentov vysokoproizvoditel’nykh vychislitel’nykh system [Modeling dynamics of key market indicators of components of hpc systems]//Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk [Proceeding of the ISA RAS]. vol.67, no. 1: 12-27.

4. Feldman M. 2018. Intel on Defensive Again Regarding Chip Manufacturing Plans. Available at:

https://www.top500.org/news/intel-on-defensiveagain-

regarding-chip-manufacturing-plans/ (accessed August 31, 2018).

5. Feldman M. 2018. DARPA Picks Research Teams for Post-Moore’s Law Work. Available at: https://www.top500.org/news/darpa-picks-research-teams-forpost-

moores-law-work/(accessed August 31, 2018).

6. Feldman M. 2018. Intel Steers Back to HPC with Cascade Lake AP Processor. Available at: https://www.top500.org/news/intel-steers-backto-

hpc-with-cascade-lake-ap-processor/(accessed November 23, 2018).

7. Problemy sprosa i predlozheniya (na primere otdel’nykh oblastej nanoehlektroniki. Gl. 7 monografii «EHkonomicheskie problemy razvitiya revolyutsionnykh tekhnologij. Nanotekhnologii» [Problems of Supply and Demand (the case of some fields of nanoelectronics) in the monograph “Economic Problems of the Revolutionary Technologies Development: Nanotechnoloy”]/ Ruk. avt. Kollektiva V.L.Makarov, А.E.Varshavsky [Eds. Academician V.L.Makarov, professor A.E.Varshavsky ]. 2012. Moscow. –Nauka: 132-157.

8. PROGRАMMА “TSifrovaya ehkonomika Rossijskoj Federatsii” [Program “Digital Economics of the Russian Federation”]. Utverzhdena rasporyazheniem Pravitel’stva Rossijskoj Federatsii ot 28 iyulya 2017 g. № 1632-r .

9. Modeling Artificial Intelligence and Exploring its Impact. 2017. Pardee Center for International Futures. Working Paper. May 2017.

10. Cockburn I.M., Henderson R. and Stern S. 2018. The Impact of Artificial Intelligence on Innovation. NBER Working Paper. No. 24449. March 2018.

11. Factories of the Future Need AI To Survive and Compete. 2017. Available at: https://www.forbes.com/sites/mariyayao/2017/08/08/industrial-aifactories-

of-future/#79e426d3128e/(accessed August 25, 2018).

12. Feldman M. 2018. DARPA Sets Up Fast Track for Third Wave AI. Available at: https://www.top500.org/news/darpa-sets-up-fast-track-forthird-

wave-ai/(accessed July 21, 2018).

13. Charles A.S. 2018. Interpreting Deep Learning: The Machine Learning Rorschach Test? . SIAM NEWS.JULY/AUGUST.

14. Varshavsky L.E. 2017. EHkonomiko-matematicheskoe modelirovanie tendentsij izmeneniya klyuchevykh pokazatelej vysokoproizvoditel’nykh superkomp’yuterov[Analysis and modeling

trends of key indicators of high-performance supercomputers]// Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk [ Proceeding of the ISA RAS]. vol.67, no. 3: 64-74.

15. Feldman M. 2017. The DOE and NSA Construct Doomsday Scenario for American HPC. Available at: https://www.top500.org/news/the-doe-andnsa-

construct-doomsday-scenario-for-americanhpc/ (accessed July.04.2017).

16. Preparing for the Future of Artificial Intelligence. 2016. National Science and Technology Council. December 2016. Executive Office of the President. Washington, D.C. 20502. December 20.

17. Source: China Science&Technology Newsletter. 2017. No 17, September 15.(accessed October 4, 2017).

18. Varshavsky А.E. 2014. Problemnye innovatsii: riski dlya chelovechestva. EHkonomicheskie, sotsial’nye i ehticheskie aspekty [Questionable Innovations: Risks for Humankind. Economic, Social, Ethical Aspects]. Moscow.: LENАND. 325 p.

19. Shvetsov А.N. 2012. Informatsionnoe obshhestvo. Teoriya i praktika stanovleniya v mire i v Rossii [Information Society.Theory and Practice of evolving in the World and in Russia]. Moscow. URSS: KRАSАND. 280 p.

20. Varshavsky L.E. 2017. Аnaliz faktorov riska, svyazannykh s informatsionnokommunikatsionnymi tekhnologiyami [An analysis of Risk Factors of Information and Communication Technologies] // Kontseptsii [Concepts]. vol. 36, no. 1: 37-47.

21. Pod kolpakom u PRISM. 2013. [Under Cover of PRISM]// Vzglyad.ru, June 07.22. Uitehker L. 2018. Kak navsegda udalit’sya iz sotssetej [How to pass away from nets]. Metro, March 29: p.08.

23. D. Acemoglu and P. Restrepo. Artificial Intelligence, Automation and Work// Journal of Human Capital. – 2018. – vol. 12. – no. 2.

24. Jacques Bughin, Eric Hazan, Susan Lund, Peter Dahlström, Anna Wiesinger and Amresh Subramaniam. 2018. Skill shift: Automation and the future of the workforce. Discussion Paper -

McKinsey Global Institute . May. Available at: https://www.mckinsey.com/featured-insights/

future-of-work/skill-shift-automation-and-thefuture-of-the-workforce. (accessed May 30, 2018).

25. AI taking jobs is not a concern for certain workers. Available at: https://searchbusinessanalytics.techtarget.com/tip/3-ways-to-make-machinelearning-

in-business-more-effective?track=NL-

1816&ad=923710&src=923710&asrc=EM_

NLN_102097887&utm_medium=EM&utm_

source=NLN&utm_campaign=20181018_

How%20to%20do%20machine%20learning%20

the%20right%20way%20for%20business%20

uses;%20jobs%20that%20AI%20isn%27t%20

likely%20to%20take;%20Oracle%20database%

20performance%20management%20tips/ (accessed May 15, 2018)

26. Marks K. Kapital. 1978. Kritika politicheskoj ehkonomii [Capital. Critique of Political Economy]. T.1. Kn. 1. Moscow, Politizdat, 907 p.

27. The Future of Jobs Report. 2018. World Economic Forum. Centre for the New Economy and Society.

28. Ivanov V.V., Malinetskij G.G. 2017. Tsifrovaya ehkonomika: mify, real’nost’, perspektiva [Digital Economics: Miths, Reality, Prospects]. Moscow.: Rossijskaya akademiya nauk [Russian Academy of Sciences].

29. Marshal J.F., Bansal V.K. Financial Engineering. Allyn&Bacon Inc., New York, 1992.

2024-74-3
2024-74-2
2024-74-1
2023-73-4

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".