Dynamical Systems
Y. A. Burtsev Solving of Cauchy Problem with High Precision Methods Based on Matrix Exponent
Information Technology
Mathematical models of socio-economic processes
Modeling of activity characteristics of sectoral and regional subsystems
Y. A. Burtsev Solving of Cauchy Problem with High Precision Methods Based on Matrix Exponent
Abstract. 

A set of new numerical methods for solving linear ordinary differential equation systems (Cauchy problem) is developed. The methods are based on decomposition of Pade approximation of the matrix exponent to simplest fractions. Homogenous systems can be solved, and nonhomogeneous systems with piecewisepolynomial right-hand side function. The new methods are equivalent to some well-known Runge-Kutta type methods like Radau and Lobatto methods in terms of accuracy and steady areas. However, new methods are much more simple in theory and practical implementation, and they require several times less computational work. Methods with diagonal Pade approximations are A-stable, and methods with subdiagonal Pade approximations are Lstable. New methods can be used for solving stiff, oscillative and stiff-oscillative systems.

Keywords: 

numerical methods, ordinary differential equations, Cauchy problem, Pade approximation, simplest fractions.
 
PP. 3-12.
 
DOI: 10.14357/20790279240101

EDN: KPQYBO 
 
References

1. Burtsev Y. High Precision Methods Based on Pade Approximation of Matrix Exponent for Numerical Analysis of Stiff-Oscillatory Electrical Circuits. Proceedings - 2020 International Conference on Industrial Engineering, Applications and Manufacturing, ICIEAM 2020; IEEE inc.
2. Gridin V.N., Mikhajlov V.B., Shusterman L.B. Numerical-analytical modelling of radioelectronic schemes. Moscow: Science Publishing; 2008. 339 p.
3. Burtsev Y.A. 2013. Comparing of program for calculation of electrical circuits based on modified table method with known analogs. Izvestiya vysshih uchebnyh zavedenij. Elektromekhanika. 2013; 4:8-13 (In Russ).
4. Pilipenko A.M. 2017. High precision hybrid methods for numerical analysis of stiff and oscillative circuits in time domain. Modelirovanie, optimizatsiya i informatzionnye technologii. 2017; 3(18):9295
(In Russ). Available at: https://moit.vivt.ru/wp-content/
uploads/2017/08/Pilipenko_3_1_17.pdf. Accessed July 12, 2023.
5. E. Hairer, S.P. Norsett, G. Wanner. Solving ordinary differential equations I. Nonstiff Problems. Springer Verlag Berlin Heidelberg; 1987. 512 р.
6. E. Hairer, G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Second Revised Edition. Springer Verlag Berlin Heidelberg; 1991, 1996. 685 р.
7. Skvortsov L.M. Numerical solving of ordinary differential and differential-algebraic equations. Moscow: DMK Press Publishing; 2018. 230 p.
8. Moler C., Van Loan C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review; 2003; vol. 45(1):3-49
9. Rakitskij Y.V., Ustinov S.M., Chernorutskij I.G. Numerical methods for solving stiff problems. Moscow: Science Publishing; 1979. 208 p.
10. Leon O. Chua, Pen-Min Lin. Computer-aided analysis of electronic circuits. Prentice-Hall, Inc. Englewood Cliffs, New Jersey; 1975. 640 p.
11. G.A. Baker, Jr., P. Graves-Morris. Pade approximants. London: Addison-Wesley Publishing Company. 1981. 502 p.
12. J. Vlach, K. Singhal. Computer Methods for Circuit Analysis and Design. New York: Van Nostrand Reinhold Company. 1983. 560 p.
 
 
 
2024-74-1
2023-73-4
2023-73-3
2023-73-2

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".