Dynamical Systems
Information Technology
N.V. Pestryakova Noniterative implementation of the vorticity evaluation in a limited area
Mathematical models of socio-economic processes
Modeling of activity characteristics of sectoral and regional subsystems
N.V. Pestryakova Noniterative implementation of the vorticity evaluation in a limited area
Abstract. 

A numerical method is considered to predict 2D unsteady convective heat transfer by weakly compressible liquid in cavities of various forms with a number of dynamic and temperature boundary conditions in “stream function-vorticity-temperature” variables. A splitting finite-difference scheme is used, which is linearized on convective terms, written in a special way. Here is developed a noniterative implementation of the vorticity evaluation on a boundary. A flow in a channel with a square cavity on the bottom, and also a buoyancydriven flow in a square cavity with side walls of different temperature are modeled.

Keywords: 

Navier-Stokes equations, Poisson equation, vorticity, stream function, Thom condition, convective heat transfer.

PP. 41-51.

DOI: 10.14357/20790279240106 

EDN: SQPZDV
 
References

1. Grimitlin M.I. Air distribution in the rooms. 3rd Ed. St. Petersburg: AVOK Severo-Zapad; 2004. 320 p.
2. Zasimova M.A., Ivanov N.G., Markov D. Numerical modeling of air circulation in a room when supplied from a flat slot. I. Testing the use of the eddy-resolving approach using periodic formulation.Nauchno-tekhnicheskiye vedomosti CPbGPU. Fiziko-matematicheskiye nauki. 2020; 13 (3): 56–74.
3. Zasimova M.A., Ivanov N.G., Markov D. Numerical modeling of air circulation in a room when supplied from a flat slot.II. LES-calculations for a room of finite width. Nauchno-tekhnicheskiye vedomosti CPbGPU. Fiziko-matematicheskiye nauki. 2020; 13 (3): 75–92.
4. Bennetsen J.C. Numerical simulation of turbulent airflow in livestock buildings. The Technical University of Denmark. The Department of Mathematical Modeling. Ph. D thesis. 1999. 205 p.
5. Voight L.K. Navier– Stokes simulations of airflow in rooms and around human body. International Center for Indoor Environment and Energy, Technical University of Denmark. Department of Energy Engineering. Ph. D thesis. 2001. 169 p.
6. Mora L., Gadgil A.J., Wurtz E. Comparing zonal and CFD model predictions of isothermal indoor airflows to experimental data Indoor Air. 2003; 13 (2): 77–85.
7. Rong L., Nielsen P.V. Simulation with different turbulence models in an annex 20 room benchmark test using Ansys CFX 11.0. Denmark, Aalborg University, Department of Civil Engineering. 2008. DCE Technical Report. No. 46. 16 p.
8. Dreau J.L., Heiselberg P., Nielsen P.V. Simulation with different turbulence models in an Annex 20 benchmark test using Star-CCM+. Denmark, Aalborg University, Department of Civil Engineering. 2013. DCE Technical Report. No. 147. 22 p.
9. Yuce B.E., Pulat E. Forced, natural and mixed convection benchmark studies for indoor thermal environments. International Communications in Heat and Mass Transfer. 2018; 92(March): 1–14.
10. Gavrikov M.B., Pestryakova N.V. Numerical modeling of convective heat transfer in a limited area. M.: IPM im. M.V.Keldysha. 1997. Preprint № 28. 23 p.
11. Gerasimkov B.P., Gubareva L.B., Pestryakova N.V. Numerical modeling of convective-diffusion processes in a cavity.M.: IPM im. M.V.Keldysha. 1997. Preprint № 28. 23 p.
12. Gerasimkov B.P., Pestryakova N.V. Numerical modeling of practical problems of laminar air exchange. M.: IPM im. M.V.Keldysha. 1997. Preprint № 28. 23 p.
13. Gerasimkov B.P., Pestryakova N.V. Моделирование турбулентных режимов вентиляции помещений. M.: IPM im. M.V.Keldysha. 1997. Preprint № 28. 23 p.
14. Ryaben’kiy V.S., Torgashov V.A. An Iteration-Free Approach to Solving the Navier–Stokes Equations by Implicit Finite Difference Schemes in the Vorticity-Stream Function Formulation. Matem. Modelirovaniye. 1996; 8 (10): 100-112.
15. Ryaben’kii V.S., Torgashov V.A. An Iteration-Free Approach to Solving the Navier–Stokes Equations by Implicit Finite Difference Schemes in the Vorticity-Stream Function Formulation. Journal of Scientific Computing. Springer Science+Business Media, LLC, part of Springer Nature. 2019.
https://doi.org/10.1007/s10915-019-00926-1
16. Richards C.W., Crane C.M. Pressure Marching Schemes that Work. Int. J. Numer. Methods Engng. 1980; 15 (4): 599–610.
17. Vabishchevich P.N., Makarov M.M., Popkov A.G., Chudanov V.V., Churbanov A.G. Numerical solution of hydrodynamics problems in the variables “stream function, velocity vortex, temperature”. M.: IPM im. M.V.Keldysha. 1993. Preprint №22. 21 p.
18. Vabishchevich P.N., Makarov M.M., Chudanov V.V., Churbanov A.G. Numerical modeling of convective flows in the variables “stream function, velocity vortex, temperature”. M.: Institut matematicheskogo modelirovaniia RAN. 1993. Preprint №28.
19. Douglas J., Rachford H.H. On the Numerical Solution of Heat Conduction Problems in Two and Three Space Variables. Trans. Amer. Math. Soc. 1956. 82: 421–439.
20. Iliev O.P., Makarov M.M., Vassilevski P.S. Performance of Certain Iterative Methods in Solving Implicit Difference Schemes for 2-D Navier-Stokes Equations. Int. J. Numer. Methods Engng. 1992. 33(7): 1465-1479.
21. Dzhonson R., Danak A. Heat transfer in laminar flow around a rectangular cavity in the presence of liquid injection. Teploperedacha. Seriia S. 1976. 98 (2): 84–90.
 
2024-74-4
2024-74-3
2024-74-2
2024-74-1

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".