Scientometrics and management science
Modeling of activity characteristics of sectoral and regional subsystems
Suvorov R., Devyatkin D., Usenko N., Otmakhova Ju. Review of Methods for Data-Driven Export Potential Analysis
Computer analysis of texts
Suvorov R., Devyatkin D., Usenko N., Otmakhova Ju. Review of Methods for Data-Driven Export Potential Analysis


The paper presents a survey of approaches and data sources that may be useful for forecast of export growth potential of a country. We considered main studies in the area of analysis of international trade flows. The observed materials were divided into three main groups according to their intended purpose. We suggested a data-driven problem of discovering «growth points” to improve export potential of a country. Conclusions were drawn on further directions of the research using mining of the databases of international trade statistics and semantic search on collections of scientific and technical documents.


export growth potential, patent search, data mining, international trade, customs statistics, growth points, technologies.

PP. 75-85.


1. Export-import of basic commodities in January-December 2015. Official website of the Russian Customs Service / – Available at: http://, (accessed December 23, 2016).
2. Russia has overtaken the United States on the export of grain, 2016 / Available at:, (accessed December 23, 2016).
3. FAOSTAT / UN Food and Agriculture Organization. – Available at: (accessed December 23, 2016).
4. Ivanova L., Tverskaya G, Tochki rosta i drajvery rosta: k voprosu o soderzhanii ponyatij [Points of growth and drivers of growth: the question of the content of the concepts]// Zhurnal institucionalnyh issledovanij [Journal of Institutional Research]. – 2015. –Vol. 7(2). – pp. 120-133.
5. Yoon B. On the development of a technology intelligence tool for identifying technology opportunity //Expert Systems with Applications. – 2008. – Vol. 35(1). – pp. 124-135.
6. Daim T. U. et al. Forecasting emerging technologies: Use of bibliometrics and patent analysis // Technological Forecasting and Social Change. – 2006. – Vol. 73(8). – pp. 981-1012.
7. Andersen B. The hunt for S-shaped growth paths in technological innovation: a patent study //Journal of Evolutionary Economics. – 1999. – Vol. 9(4). –
pp. 487-526.
8. Green R. T., Allaway A. W. Identification of export opportunities: A shift-share approach //The Journal of Marketing. – 1985. – pp. 83-88.
9. Duenas M., Fagiolo G. Modeling the International- Trade Network: a gravity approach //Journal of Economic Interaction and Coordination. – 2013. – Vol. 8(1). – p. 155-178.
10. Snijders T. A. B. Models for longitudinal network data //Models and methods in social network analysis. – 2005. – Vol. 1. – pp. 215-247.
11. Jaud M., Kukenova M., Strieborny M. Financial Development and Sustainable Exports: Evidence from Firm-product Data //The World Economy. – 2015. – Vol. 38(7). – pp. 1090-1114.
12. Serdyukova Yu., Usenko N. Strategicheskie prioritety integracionnogo vzaimodejstviya Rossii i Belarusi s pozicii obespecheniya prodovolstvennoj bezopasnosti [Strategic priorities of the integration between Russia and Belarus in terms of ensuring food security.]// Ehkonomicheskie i socialnye peremeny fakty tendencii prognoz [Economic and social changes: facts, trends and outlook]. – 2013. – No. 3 (27).
13. Prihodchenko O. Vyyavlenie ehksportnyh i importnyh prioritetov respubliki Belarus na osnove modelirovaniya mezhotraslevyh svyazej [Detection of export and import priorities of the Republic of Belarus on the basis of modeling of inter-branch relations]// Belorusskij zhurnal mezhdunarodnogo prava i mezhdunarodnyh otnoshenij [Belarusian Journal of International Law and International Relations]. – 2002.
14. Zakshevskaya E., Litvinenko T. Mirovye tendencii v proizvodstve i sbyte myasa KRS [Global trends in the production and marketing of beef] //Mezhdunarodnyj selskohozyajstvennyj zhurnal [International Journal of Agricultural]. – 2016. – No. 5.
15. Grater S. et al. Linking export opportunities of products and services: the case of South Africa.
16. Cuyvers L. et al. A decision support model for the planning and assessment of export promotion activities by government export promotion institutions—the Belgian case //International Journal of Research in Marketing. – 1995. – Vol. 12(2). – pp. 173-186.
17. Cuyvers L. Identifying export opportunities: the case of Thailand //International Marketing Review. – 2004. – Vol. 21(3). – pp. 255-278.
18. Cuyvers L., Viviers W. (ed.). Export Promotion-A Decision Support Model Approach. – AFRICAN SUN MeDIA, 2012.
19. Sgrignoli P. The World Trade Web: A Multiple- Network Perspective //arXiv preprint arXiv:1409.3799. – 2014.
20. Lall S., Weiss J., Zhang J. The “sophistication” of exports: a new trade measure //World Development. – 2006. – Vol. 34(2). – pp. 222-237.
21. Bernard A. B., Jensen J. B. Why some firms export //Review of Economics and Statistics. – 2004. – Vol. 86(2). – pp. 561-569.
22. Barigozzi M., Fagiolo G., Garlaschelli D. Multinetwork of international trade: A commodityspecific analysis //Physical Review E. – 2010. – Vol. 81(4). – pp. 046104.
23. Peluso S. et al. International Trade: a Reinforced Urn Network Model. – 2016. – No. 1601.03067.
24. Fronczak A. Structural Hamiltonian of the international trade network //No. – 2012. – Vol. 1. – №. arXiv: 1205.4589. – pp. 31-46.
25. Shen B., Zhang J., Zheng Q. Exploring multi-layer flow network of international trade based on flow distances //arXiv preprint arXiv: 1504.02361. – 2015.
26. Shi P. et al. Hierarchicality of trade flow networks reveals complexity of products //PloS one. – 2014. – Vol. 9(6). – p. e98247.
27. Kelle M. et al. Cross-border and Foreign Affiliate Sales of Services: Evidence from German Microdata //The World Economy. – 2013. – Vol. 36(11). – pp. 1373-1392.
28. Choquette E., Meinen P. Export spillovers: Opening the black box //The World Economy. – 2015. – Vol. 38(12). – pp. 1912-1946.
29. Mosejko V., Azmina Yu. Mnogofaktornaya ocenka ehksportnogo potenciala malyh i srednih predpriyatij regiona [Multifactor assessment of the export potential of small and mediumsized enterprises in the region]// Vestnik volgogradskogo gosudarstvennogo universiteta seriya 3 ehkonomika. ehkologiya [Journal of Volgograd State University. Series 3: The Economy. The Ecology.]. – 2012. – No. 2.
30. Kalinina L. Perspektivnye napravleniya ehksporta yaic i yajceproduktov proizvedennyh v irkutskoj oblasti [Promising directions for export eggs and egg products produced in the Irkutsk region]// Vestnik Vostochno-sibirskogo gosudarstvennogo universiteta tekhnologij i upravleniya [Journal of the East Siberian State University of Technology and Management]. – 2015. – Vol. 1(52). – pp. 201-591.
31. Gaulier G., Zignago S. Baci: international trade database at the product-level (the 1994-2007 version). – 2010.
32. Solleder O. et al. Panel Export Taxes (PET) Dataset: New Data on Export Tax Rates //Graduate Institute of International and Development Studies Working Paper. – 2013. – Vol. 7. – p. 2013.
33. Solleder O. Market access and trade – free data from ITC/UNCTAD/WTO / Olga Solleder. – Available at:, (accessed December 23, 2016).
34. UN Comtrade: International Trade Statistics / UN. – Available at:, (accessed December 23, 2016).
35. CHELEM – International Trade Database / CEPII. – Available at: (accessed December 23, 2016).
36. Trade Costs Dataset / World Bank. – Available at:, (accessed December 23, 2016).
37. ASD «Dostup TSVT» [AAS “Access CSFT”] / Federal Customs Service. – Available at: http://, (accessed December 23, 2016).
38. Trade Map – Trade Statistics for Interntational Business Development / UN International Trade Centre. – Available at: December 23, 2016).
39. Federal Institute of Industrial Property – Available at: (accessed December 23, 2016).
40. Patel J. et al. Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques // Expert Systems with Applications. – 2015. – Vol. 42(1). – pp. 259-268.
41. Sheremetyeva S. Natural language analysis of patent claims //Proceedings of the ACL-2003 workshop on Patent corpus processing – Vol. 20. – Association for Computational Linguistics, 2003. – pp. 66-73.
42. Devyatkin D.., Smirnov I., Sochenkov I., Tikhomirov I. Sovremennye metody kompyuternoj lingvistiki dlya patentnogo poiska i analiza informacii [Natural language processing methods for patent search and patent mining] //Intellektualnaya sobstvennost promyshlennaya sobstvennost specialnyj vypusk [Intellectual property, industrial property – special issue] 2016, p.71-77.
43. Dean J., Ghemawat S. MapReduce: simplified data processing on large clusters //Communications of the ACM. – 2008. – Vol. 51(1). – pp. 107-113.


© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".