Methods and models in economy
Dynamical Systems
Applied aspects in informatics
Системный анализ в медицине
V.N. Krut`ko, V.I. Dontsov, O.V. Mitrokhin, A.A. Matveev, N.A. Ermakova, N.S. Potemkina Artificial intelligence for health saving and personal potential development (review)
V.N. Krut`ko, V.I. Dontsov, O.V. Mitrokhin, A.A. Matveev, N.A. Ermakova, N.S. Potemkina Artificial intelligence for health saving and personal potential development (review)
Abstract. 

Artificial intelligence (AI) is a rapidly developing branch of computer science. Human health, as an element of personal potential, is currently one of the main areas of investment in AI. The main purpose of health-related applications is to analyze the relationship between prevention or treatment methods and patient outcomes. AI programs have been developed and applied in practice, which diagnose and monitor the patient’s condition, develop treatment protocols, and develop medicines. The development of AI and Big Data methods opens up new opportunities for health saving, allowing you to analyze huge amounts of information, in fact, opening a new era in the science and practice of health management. This paper provides an overview of the current state of use of AI principles and methods in the field of health.

Keywords: 

informatics, artificial intelligence, big data, health, ageing, personalized medicine.

DOI: 10.14357/20790279200310

PP. 86-100.
 
References

1. Volchek Ju.A., Shishko O.N., Spiridonova O.S. and Mohort T.V. 2017. Polozhenie modeli iskusstvennoj nejronnoj seti v medicinskih jekspertnyh sistemah [Artificial neural network in medical expert systems]. JUVENIS SCIENTIA. 9:4-9.
2. Pokidova A.V. 2018. Iskusstvennyj intellekt v medicine [Artificial intelligence in medicine]. Dostizhenija nauki i obrazovanija [Achievements of science and education] 1(23):9-11.
3. Goluhova E.Z. 2017. Ot klinicheskih issledovanij k innovacionnym tehnologijam [From clinical studies to innovative technologies]. Kreativnaja kardiologija[Creative cardiology] 11(3):192-201.
4. Karpov O.Je., Klimenko G.S. and Lebedev G.S. 2016. Primenenie intellektual’nyh sistem v zdravoohranenii [Application of intelligent systems in health care]. Sovremennye naukoemkie tehnologi [Modern science-intensive technologies]. 7-1:38-43.
5. Buch V.H., Ahmed I. and Maruthappu M. 2018. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 68(668):143-144.
6. Yang C.C. and Veltri P. 2015. Intelligent healthcare informatics in big data era// Artif Intell Med. 65(2):75-7.
7. Kobrinskij B.A. 2016. Edinoe informacionnoe prostranstvo: e-health i m-health [Unified information space of e-health and m-health]. Vrach i informacionnye tehnologii [Doctor and information technologies] 4:57-66.
8. Moen H., Peltonen L.M., Heimonen J., Airola A., Pahikkala T., Salakoski T. and Salanterä S. 2016. Comparison of automatic summarisation methods for clinical free text notes. Artif Intell Med. 67:25-37.
9. Hassanpour S. and Langlotz C.P. 2016. Information extraction from multi-institutional radiology reports. Artif Intell Med. 66:29-39.
10. Fralenko V.P. and Shustova M.V. 2017. Programmnyj kompleks dlja avtomaticheskogo vydelenija, vizualizacii i rascheta informativnyh harakteristik oblastej interesa v biomedicinskih dannyh MRT [Software package for automatic extraction, visualization and calculation of the informative characteristics of regions of interest in biomedical MRI data]. Vestnik novyh medicinskih tehnologij. Jelektronnoe izdanie [Bulletin of new medical technologies] 11(4):255-262.
11. Rajpurkar P., Hannun A.Y., Haghpanahi M., Bourn C. and Ng A.Y. 2017. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:1707.01836.
12. Cohen A.A., Morissette-Thomas V., Ferrucci L. and Fried L.P. 2016. Deep biomarkers of aging are population-dependent. Aging (Albany NY). 8(9):2253-2255.
13. Wang Z., Li L., Glicksberg B.S., Israel A., Dudley J.T. and Ma’ayan A. 2017. Predicting age by mining electronic medical records with deep learning characterizes differences between chronological and physiological age. J Biomed Inform. 76:59-68.
14. Oakden-Rayner L., Carneiro G., Bessen T., Nascimento J.C., Bradley A.P. and Palmer L.J. 2017. Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci Rep. 7(1):1648.
15. Le N.V., Kamaev V.A., Panchenko D.P. and Trushkina O.A. 2014. Model predstavlenija znanij pri sozdanii medicinskoj jekspertnoj sistemy differencial’noj diagnostiki [Model of representation of knowledge when creating medicinskoj jekspertnoj system differentsialnykh noj diagnostics]. Izvestija Volgogradskogo gosudarstvennogo tehnicheskogo universiteta [Proceedings of the Volgograd state technical University] 20(6):41-50.
16. Shen Y., Yuan K., Chen D., Colloc J., Yang M., Li Y. and Lei K. 2018. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription. Artif Intell Med. 86:20-32.
17. Mendez J.A., Leon A., Marrero A., Gonzalez-Cava J.M., Reboso J.A., Estevez J.I. and Gomez-Gonzalez J.F. 2018. Improving the anesthetic process by a fuzzy rule based medical decision system. Artif Intell Med. 84:159-170.
18. Pokidysheva L.I., Borisova I.V., Rusanova O.A. and Savickaja M.V. 2015. Algoritm reshenija zadachi medicinskoj diagnostiki zabolevanij pishhevoj allergii [Algorithm for solving the problem of medicinskoj diagnosis of zabolevanij pishhevoj allergies]. Mezhdunarodnyj issledovatel’skij zhurnal [International research journal] 1-2(41):99-102.
19. Kuzovkov A.V. and Vavilov A.Ju. 2017. Objektivizacija diagnosticheskih algoritmov ustanovlenija davnosti smerti cheloveka po dinamike timpanicheskoj temperatury [Objectification of diagnostic algorithms establish the prescription of death of the person on the dynamics of tympanic temperature]. Sovremennyj problemy nauki i obrazovanija [Modern problems of science and education] 2:12.
20. Kang S. 2018. Personalized prediction of drug efficacy for diabetes treatment via patient-levelsequential modeling with neural networks. Artif Intell Med. 85:1-6.
21. Saleh E., Błaszczyński J., Moreno A., Valls A., Romero-Aroca P., de la Riva-Fernández S. and Słowiński R. 2018. Learning ensemble classifiers for diabetic retinopathy assessment. Artif Intell Med. 85:50-63.
22. Kazemi Y. and Mirroshandel S.A. 2018. A novel method for predicting kidney stone type using ensemble learning. Artif Intell Med. 84:117-126.
23. Haddawy P., Hasan A.H.., Kasantikul R., Lawpoolsri S., Sa-Angchai P., Kaewkungwal J. and Singhasivanon P. 2018. Spatiotemporal Bayesian networks for malaria prediction. Artif Intell Med. 84:127-138.
24. Li X., Xu Y., Cui H., Huang T., Wang D., Lian B., Li W., Qin G., Chen L. and Xie L. 2017. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif Intell Med. 83:35-43.
25. Dorado-Moreno M., Pérez-Ortiz M., Gutiérrez P.A., Ciria R., Briceño J. and Hervás-Martínez C. 2017. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med. 77:1-11.
26. Zamborlini V., da Silveira M., Pruski C., Ten T.A., Geleijn E., van der Leeden M., Stuiver M. and van Harmelen F. 2017.Analyzing interactions on combining multiple clinical guidelines. Artif Intell Med. 81:78-93.
27. Sirin U., Erdogdu U., Polat F., Tan M. and Alhajj R. 2016. Effective gene expression data generation framework based on multi-model approach. Artif Intell Med. 70:41-61.
28. Jasnickij L.N. and Vnukova O.V. 2014. Prognoz rezul’tatov olimpiady-2014 v muzhskom odinochnom figurnom katanii metodami iskusstvennogo intellekta [Forecast of the results of the 2014 Olympic games in men’s single figure skating by artificial intelligence methods]. Sovremennye problemy nauki i obrazovanija [Modern problems of science and education] 1:189.
29. Искусственный интеллект в медицине: главные тренды в мире https://medaboutme.ru/zdorove/publikacii/stati/so-vety_vracha/iskusstvennyy_intellekt_v_meditsine_glavnye_trendy_v_mire/?utm_source=copypaste&utm_me-dium=referral&utm_campaign=copypaste (Аvailable: 16.11.2015).
30. MedAbout. https://medaboutme.ru/zdorove/ (Аvailable: 16.11.2015).
31. Watsononcology. https://watsononcology. manipalhospitals.com/ (Аvailable: 16.11.2015).
32. Amit G. and Purdie T.G. 2015. Automated planning of breast radiotherapy using cone beam CT imaging. Medical Physics. 42(2):770-779.
33. MedicalSieve – IBM. https://researcher.watson.ibm.com/ researcher/view_group.php?id =4384. (Аvailable: 16.11.2015).
34. Deepmind. https://deepmind.com/applied/deepmind-health/. (Аvailable: 16.11.2015).
35. Neurolex. https://www.neurolex.ai/. (Аvailable: 16.11.2015).
36. Face2gene. https://www.face2gene.com/. (Аvailable: 16.11.2015).
37. Hadj-Rabia S., Schneider H., Navarro E., Klein, O., Kirby N., Huttner K., Wolf L., Orin M., Wohlfart S., Bodemer C. and Grange D.K. 2017. Automatic recognition of the XLHED phenotype from facial images. Am J Med Genet A. 173(9):2408-2414.
38. Human diagnosis project. https://www.humandx.org/ (Аvailable: 16.11.2015).
39. Sensely. http://www.sensely.com/ (Аvailable: 16.11.2015).
40. On line Doctor Consultations. https://www.babylonhealth.com/(Аvailable: 16.11.2015).
41. Liu J., Zhao S., Wang G. 2018. SSEL-ADE: A semi-supervised ensemble learning framework for extracting adverse drug events from social media. Artif Intell Med. 84:34-49.
42. Jiang L. and Yang C.C. 2017. User recommendation in healthcare social media by assessing user similarity in heterogeneous network. Artif Intell Med. 81:63-77.
43. Altini M., Casale P., Penders J. and Amft O. 2016. Cardiorespiratory fitness estimation in free-living using wearable sensors. Artif Intell Med. 68:37- 46.
44. Tung C. and Lu W. 2016. Analyzing depression tendency of web posts using an event-driven depression tendency warning model. Artif Intell Med. 66:53-62.
45. Deepgenomics. https://www.deepgenomics.com/ (Аvailable: 16.11.2015).
46. ResearchKit and CareKit. https://www.apple.com/researchkit/(Аvailable: 16.11.2015).
47. NewScientist https://www.newscientist.com/article/2086454-revealed-google-ai-has-accessto-huge-haul-of-nhs-patient-data (Аvailable: 16.11.2015).
48. Arroyo-Gallego T. Ledesma-Carbayo M.J., Butterworth I., Matarazzo M., Montero-Escribano P., Puertas-Martín V., Gray M.L., Giancardo L. and Sánchez-Ferro Á. 2018. Detecting Motor Impairment in Early Parkinson’s Disease via Natural Typing Interaction With Keyboards: Validation of the neuroQWERTY Approach in an Uncontrolled At-Home Setting. J Med Internet Res. 20(3):e89.
49. The FDA Approved an Algorithm That Predicts Death. https://futurism.com/fdaapproved-algorithm-predicts-death/ (Аvailable: 16.11.2015).
50. Pyrkov T.V., Slipensky K., Barg M., Kondrashin A., Zhurov B., Zenin A., Pyatnitskiy M., Menshikov L., Markov S., Fedichev P.O. 2018. Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci Rep. 8(1):5210.
51. Odamaki T., Kato K., Sugahara H., Hashikura N., Takahashi S., Xiao J.Z., Abe F. and Osawa R. 2016. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16:90.
52. Vidaki A., Ballard D., Aliferi A., Miller T.H., Barron L.P. and Syndercombe C.D. 2017. DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci Int Genet. 28:225-236.
53. Putin E., Mamoshina P., Aliper A., Korzinkin M., Moskalev A., Kolosov A., Ostrovskiy A., Cantor C., Vijg J. and Zhavoronkov A. 2016. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY). 8(5): 1021-1033.
54. Costa A., Rincon J.A., Carrascosa C., Novais P. and Julian V. 2018. Activities suggestion based on emotions in AAL environments. Artif Intell Med. 86:9-19.
55. Nazarenko G.I., Osipov G.S. Osnovy teorii meditsinskikh tekhnologicheskikh protsessov. Ch. 1. – M.: Fizmatlit, 2005. – 144 s.
56. Nazarenko G.I., Osipov G.S. Osnovy teorii meditsinskikh tekhnologicheskikh protsessov. Ch. 2. Issledovanie meditsinskikh tekhnologicheskikh protsessov na osnove intellektualnogo analiza dannykh. – M.: Fizmatlit, 2006. – 144 s.
57. Shesternikova O.P., Pankratova Ye.S., Agafonov M.A., Vinokurova L.V., Finn V.K. Intellektualnaya sistema prognozirovaniya razvitiya sakharnogo diabeta u bolnykh khronicheskim pankreatitom// Iskusstvennyy intellekt i prinyatie resheniy. 2015. № 4. S. 12-50.
58. Kuznetsova Yu.M., Kuruzov I.A., Smirnov I.V., Stankevich M.A., Starostina Ye.V., Chudova N.V. Tekstovye proyavleniya frustrirovannosti polzovatelya sotsialnykh setey // Medialingvistika. 2020. T. 7. № 1. S. 4-15.
59. Krutko V.N., Bolshakov A.M., Briko A.N., Dontsov V.I., Zubrikhina M.O., Krutko A.V., Mamikonova O.A., Molodchenkov A.I., Palchevskiy A.I., Potemkina N.S., Smirnov I.V, Smirnova T.M. , Fedin K.A., Khodykina T.M. Intellektualnaya sistema zdorovesberezheniya - InSiZ // Vestnik vosstanovitelnoy meditsiny. 2018. № 1. S. 14-20.
60. Kirikov I.A., Kolesnikov A.V., Rumovskaya S.B. Funktsionalnaya gibridnaya intellektualnaya sistema dlya podderzhki prinyatiya resheniy pri diagnostike arterialnoy gipertenzii// Sistemy i sredstva informatiki. – 2014. – T. 24. – №1. – S. 153–179.
 

2024-74-2
2024-74-1
2023-73-4
2023-73-3

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".