Abstract.
The economic well-being and development of any country are based on a person’s personal capabilities – personal potential (PP), which includes physiological, subject-material and social resources. The basic component of PP is its “physical” (physiological) component, an understanding of the potential of the individual as an individual’s ability to perform work, both physical and intellectual. A common characteristic of PP is the overall viability, which naturally and sharply decreases with age in the process of biological aging, and the quantitative assessment of which is the intensity of mortality for populations, and for an individual – biological age (BA), so the assessment of BA is urgent for the problem of PP. A method and a computer system for optimizing biomarkers (BM) have been developed to determine human BA, considering configurable criteria for the selection of BM. The method allows you to automate the construction of BM panels, increase the accuracy of determining BA and reduce the number of measured BM but the optimum.
Keywords:
personal potential, aging, biological age, biomarker, biomarker panel, optimization.
PP. 78-87.
DOI: 10.14357/20790279220209 References
1. Lichnostnyj potencial: struktura i diagnostika [Personal potential: structure and diagnosis] 2011/ Pod red. D.A. Leont’eva [Ed. D.A. Leontiev]. Moscow, Smysl. 2. Dotsov V.I., Krut’ko V.N. 2018. Sistemnyj analiz biomarkerov starenija dlja opredelenija biologicheskogo vozrasta [System analysis of biomarkers of aging to determine biological age]// Trudy ISA RAN [Proceedings of the Institute of System Analysis of the Russian Academy of Sciences] 68(4):32-41. 3. Hasanova R. Smertnost’ v Rossii: o chem govorjat dannye 2017 g. 2018. [Mortality u in Russia: what is the 2017 date]. Jekonomicheskoe razvitie Rossii [Economic development of Russia] 25(2): 64-68. 4. Krut’ko V.N., Smirnova T.M. 2002. Analiz tendencij smertnosti i prodolzhitel’nosti zhizni naselenija Rossii v konce XX veka [Analysis of trends in mortality and life expectancy of the Russian population at the end of the XX century]. Moscow, Editorial, URS. 5. Dontsov V.I., Ermakova N.A., Kakorina E.P., Krut’ko V.N., Kuznecov P.P. 2020. Ocenka processov starenija v individual’noj dinamike pokazatelej zdorov’ja i trudosposobnosti [Evaluation of the aging process in the individual dynamics of the indicators of health and work productivity]. Medicina truda i promyshlennaja jekologija [Occupational medicine and social psychology] 5:311-317. 6. Dontsov V.I. 2021. Historical stability of the human aging rate and its decline in our time. Biology Bulletin. 48(2):103–106. 7. Dean W. (Ed.) 1988. Biological aging measurement. Los Angeles. 8. Anstey K.J., Smith G.A. 1999. Interrelationships among biological markers of aging, health, activity, acculturation, and cognitive performance in late adulthood. Psychol Aging. 14(4):605-618. 9. DeCarlo C.A, Tuokko H.A, Williams D., Dixon R.A., MacDonald S.W. 2014. BioAge: toward a multidetermined, mechanistic account of cognitive aging. Ageing Res. Rev. 18:95-105. 10. Dontsov V.I., Krut’ko V.N. 2015. Biologicheskij vozrast kak metod sistemnoj ocenki ontogeneticheskih izmenenij sostojanija organizma [Biological age as a method of systematic evaluation of ontogenetic changes in the state of the organism]. Ontogenez [Ontogenesis] 46(5):295-303. 11. Dontsov V.I., Krut’ko V.N. 2021. Komp’juternaja programma «DIAGNOSTIKA STARENIJa: Iskusstvennyj intellekt»[Computer program “DIAGNOSTICS OF AGING: Artificial intelligence”]. Svidetel’stvo o gosudarstvennoj registracii programmy dlja EVM [Certificate of state registration of the computer program] № 2021616310. 20.04.2021. 12. Vojtenko V.P., Tokar A.V., Poljuhov A.M. 1984. Metodika opredelenija biologicheskogo vozrasta cheloveka [Method of determination of biological age]. Gerontologija i geriatrija [Heredity and aging]. Ezhegodnik. Biologicheskij vozrast. Nasledstvennost’ i starenie [Yearbook. Biological age. Heredity and aging]. Kiev. P. 133-137. 13. Krut’ko V.N., Dontsov V.I., Khalyavkin A.V., Markova A.N. 2018. Natural aging as a sequential poly-systemic syndrome. Frontiers in Bioscience, Landmark. 23:909-920. 14. Balin A.K. ed. 1996. Practical Handbook of Human Biological Age Determination. Boca Raton. FL, CRC Press. 15. Finkel D., Sternäng O., Wahlin Å. 2017. Genetic and Environmental Influences on Longitudinal Trajectories of Functional Biological Age: Comparisons Across Gender. Behav Genet. 47(4):375-382. 16. Krøll J., Saxtrup O. 2000. On the use of regression analysis for the estimation of human biological age. Biogerontology. 1(4):363-368. 17. Negasheva M., Lapshina N., Okushko R., Godina E. 2014. Biological age and tempos of aging in women over 60 in connection with their morphofunctional characteristics. J Physiol. Anthropol. 33(1):12. 18. McClean G.E. 1997. Biomarkers of age and aging (Review). Exp. Gerontol. 32(1-2):87. 19. Mooradian A.D. 1990. Biomarkers of aging: do we know what to look for?. J.Gerontol. 45(6):183-186. 20. Moskalev A., Anisimov V., Aliper A. Artemov A., Asadullah K., Belsky D. et all. 2017. A review of the biomedical innovations for healthy longevity. Aging (Albany NY). 9(1):7–25. 21. Moskalev A., Chernyagina E., Tsvetkov V., Fedintsev A., Shaposhnikov M., Krut’ko V., Zhavoronkov A. and Kennedy B. K. 2016. Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell. 15:407-415. 22. Putin E., Mamoshina P., Aliper A., Korzinkin M., Moskalev A., Kolosov A. et al. 2016. Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging (Albany NY). 8(5):1021-1033. 23. Vidaki A., Ballard D., Aliferi A., Miller T.H., Barron L.P., Syndercombe C.D. 2017. DNA methylationbased forensic age prediction using artificial neural networks and next generation sequencing. Forensic Sci Int Genet. 28:225-236.
|