Информационные технологии
M.V. Bulygin, D.E. Namiot, O.N. Pokusaev "On the analysis of individual data on transport usage"
Интеллектуальный анализ данных
Методы и модели в естественных науках
Компьютерный анализ текстов
M.V. Bulygin, D.E. Namiot, O.N. Pokusaev "On the analysis of individual data on transport usage"
Abstract. 

The percentage of the world's urban population is currently more than 50\% and will increase according to UN forecasts. Urban infrastructure must develop along with population growth. This article provides an overview of methods for improving the city's transport infrastructure based on data analysis. The article presents methods for reducing harmful emissions, optimizing the operation of taxis and public transport, as well as recognizing transportation modes and some other tasks. These methods operate with data describing the transport behavior of individual users of the transport network. The sources of such data are smart card validators, GPS sensors, and smartphone accelerometers. The article reveals the advantages and disadvantages of using each of the data types, as well as presents alternative ways to obtain them. These methods, along with methods for aggregated data analysis, can become the main part of a single platform that will allow city authorities in the process of improving the transport infrastructure. We propose architecture of this platform which will allows developers to extend range of available algorithms and methods dynamically.

Keywords: 

transport data analysis, Data on transport usage, Smart city, Digital urbanism, Smart card data analysis, GPS data analysis.

Стр. 24-33.

DOI: 10.14357/20790279230104
 
 
References

1. Digital 2021. Report by “We are social” agency, https://wearesocial.com/uk/blog/2021/01/digital-2021-uk/
2. Kepler.gl, https://kepler.gl
3. Measuring digital development Facts and figures 2021, https://www.itu.int/en/ITU-D/Statistics/Documents/ facts/FactsFigures2021.pdf
4. New thinking urgently required to shift urbanisation onto a more sustainable path, https://fennerschool.
anu.edu.au/news-events/news/new-thinking-urgentlyrequired-shift-urbanisation-more-sustainable-path
5. Abosuliman, S.S., Almagrabi, A.O.: Routing and scheduling of intelligent autonomous vehicles in industrial logistics systems. Soft Computing 25(18), 11975-11988 (2021)
6. Ajrouch, K.J., Blandon, A.Y., Antonucci, T.C.: Social networks among men and women: The effects of age and socioeconomic status. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 60(6), S311-S317 (2005)
7. Arslan, M., Cruz, C., Roxin, A.M., Ginhac, D.: Spatio-temporal analysis of trajectories for safer construction sites. Smart and Sustainable Built Environment (2018)
8. Bulygin, M., Namiot, D.: Anomaly detection method for aggregated cellular operator data. In: 2021 28th Conference of Open Innovations Association (FRUCT). pp. 42-48. IEEE (2021)
9. Bulygin, M., Namiot, D.: A new approach to clustering districts and connections between them based on cellular operator data. In: 2021 29th Conference of Open Innovations Association (FRUCT). pp. 71-80. IEEE (2021)
10. Bulygin, M., Namiot, D.: On the possibilities of using the data of cellular operators to solve the problems of digital urbanism. International Journal of Open Information Technologies 9(1), 48-57 (2021)
11. Chan, T.K., Chin, C.S.: Review of autonomous intelligent vehicles for urban driving and parking. Electronics 10(9), 1021 (2021) 12.
12. Chen, D., Zhang, Y., Gao, L., Geng, N., Li, X.: The impact of rainfall on the temporal and spatial distribution of taxi passengers. Plos one 12(9), e0183574 (2017)
13. Dameri, R.: Searching for smart city definition: a comprehensive proposal. International Journal of Computers & Technology 11, 2544 (10 2013).
https://doi.org/10.24297/ijct.v11i5.1142
14. Ding, S., Huang, H., Zhao, T., Fu, X.: Estimating socioeconomic status via temporal-spatial mobility analysis-a case study of smart card data. In: 2019 28th international conference on computer communication and networks (ICCCN). pp. 1-9. IEEE (2019)
15. Downey, J., McGuigan, J.: Technocities: The Culture and Political Economy of the Digital Revolution. Sage (1999)
16. Etemad, M., Soares Júnior, A., Matwin, S.: Predicting transportation modes of gps trajectories using feature engineering and noise removal. In: Canadian conference on artificial intelligence. pp. 259-264. Springer (2018)
17. Fassio, O., Rollero, C., De Piccoli, N.: Health, quality of life and population density: A preliminary study on contextualized quality of life. Social indicators research 110(2), 479-488 (2013)
18. Golubev, A., Chechetkin, I., Solnushkin, K.S., Sadovnikova, N., Parygin, D., Shcherbakov, M.: Strategway: web solutions for building public transportation routes using big geodata analysis. In: Proceedings of the 17th international conference on information integration and web-based applications & services. pp. 1-4 (2015)
19. Hidayata, A., Terabea, S., Yaginumaa, H.: Time travel estimations using mac addresses of bus, passengers: A point to path-qgis analysis. Geoplanning: Journal of Geomatics and Planning 5(2), 259-268 (2018)
20. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global positioning system: theory and practice. Springer Science & Business Media (2012)
21. Hong, Y., Pan, H., Sun, W., Jia, Y.: Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes. arXiv preprint arXiv:2101.06085 (2021)
22. Hu, X., An, S., Wang, J.: Taxi driver’s operation behavior and passengers’ demand analysis based on gps data. Journal of advanced transportation 2018 (2018)
23. Huang, Z., Xu, L., Lin, Y., Wu, P., Feng, B.: Citywide metro-to-bus transfer behavior identification based on combined data from smart cards and gps. Applied Sciences 9(17), 3597 (2019)
24. Jiang, W., Lian, J., Shen, M., Zhang, L.: A multi-period nalysis of taxi drivers’ behaviors based on gps trajectories. In: 2017 IEEE 20th InternationalConference on Intelligent Transportation Systems (ITSC). pp. 1-6. IEEE (2017)
25. Karim, L., Boulmakoul, A., Zeitouni, K.: From raw pedestrian trajectories to semantic graph structured model towards an end-to-end spatiotemporal analytics framework. Procedia Computer Science 184, 60-67 (2021)
26. Ke, S., Song, L., Bao, K., Pan, Z., Zhang, J., Zheng, Y.: East: An enhanced automated machine learning library for spatio-temporal forecasting
27. Li, P., Abdel-Aty, M., Yuan, J.: Using bus critical driving events as surrogate safety measures for pedestrian and bicycle crashes based on gps trajectory data. Accident Analysis & Prevention 150, 105924 (2021)
28. Li, T., Wu, J., Dang, A., Liao, L., Xu, M.: Emission pattern mining based on taxi trajectory data in beijing. Journal of cleaner production 206, 688-700 (2019)
29. Liang, X., Zhang, Y., Wang, G., Xu, S.: A deep learning model for transportation mode detection based on smartphone sensing data. IEEE Transactions on Intelligent Transportation Systems 21(12), 5223-5235 (2019)
30. Liu, C., Wang, S., Cuomo, S., Mei, G.: Data analysis and mining of traffic features based on taxi gps trajectories: A case study in beijing. Concurrency and Computation: Practice and Experience 33(3), e5332 (2021)
31. Ma, X., Liu, C., Wen, H., Wang, Y., Wu, Y.J.: Understanding commuting patterns using transit smart card data. Journal of Transport Geography 58, 135-145 (2017)
32. Murez, Z., As, T.v., Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabinovich, A.: Atlas: End-to-end 3d scene reconstruction from posed images. In: European Conference on Computer Vision. pp. 414-431. Springer (2020)
33. Namiot, D., Sneps-Sneppe, M.: A survey of smart cards data mining. In: AIST (Supplement). pp. 314-325 (2017)
34. Nazem, M., Lomone, A., Chu, A., Spurr, T.: Analysis of travel pattern changes due to a medium-term disruption on public transit networks using smart card data. Transportation Research Procedia 32, 585-596 (2018)
35. Ni, Q., Fan, Z., Zhang, L., Zhang, B., Zheng, X., Zhang, Y.: Daily activity recognition and tremor quantification from accelerometer data for patients with essential tremor using stacked denoising autoencoders. International Journal of Computational Intelligence Systems 15(1), 1-13 (2022)
36. Nishiuchi, H., Chikaraishi, M.: Identifying passengers who are at risk of reducing public transport use: A survival time analysis using smart card data. Transportation research procedia 34, 291-298 (2018)
37. Pei, W., Wu, Y., Wang, S., Xiao, L., Jiang, H., Qayoom, A.: Bvis: urban traffic visual analysis based on bus sparse trajectories. Journal of Visualization 21(5), 873-883 (2018)
38. Sevtsuk, A., Basu, R., Li, X., Kalvo, R.: A big data approach to understanding pedestrian route choice preferences: Evidence from san francisco. Travel behaviour and society 25, 41-51 (2021)
39. Soltani, A., Tanko, M., Burke, M.I., Farid, R.: Travel patterns of urban linear ferry passengers: Analysis of smart card fare data for brisbane, queensland, australia. Transportation Research Record 2535(1), 79-87 (2015)
40. Sui, Y., Zhang, H., Song, X., Shao, F., Yu, X., Shibasaki, R., Sun, R., Yuan, M., Wang, C., Li, S., et al.: Gps data in urban online ride-hailing: A comparative analysis on fuel consumption and emissions. Journal of Cleaner Production 227, 495-505 (2019)
41. Sun, Y., Wu, M., Li, H.: Using gps trajectories to adaptively plan bus lanes. Applied Sciences 11(3), 1035 (2021)
42. Tao, A., Sapra, K., Catanzaro, B.: Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821 (2020)
43. Tran, T.T.M., Parker, C., Tomitsch, M.: A review of virtual reality studies on autonomous vehicle-pedestrian interaction. IEEE Transactions on Human-Machine Systems (2021)
44. Wang, L., Zhang, J., Wang, O., Lin, Z., Lu, H.: Sdc-depth: Semantic divideand-conquer network for monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 541-550 (2020)
45. Wang, Y., Qin, K., Chen, Y., Zhao, P.: Detecting anomalous trajectories and behavior patterns using hierarchical clustering from taxi gps data. ISPRS International Journal of Geo-Information 7(1), 25 (2018)
46. Wirz, M., Schläpfer, P., Kjærgaard, M.B., Roggen, D., Feese, S., Tröster, G.: Towards an online detection of pedestrian flocks in urban canyons by smoothed spatio-temporal clustering of gps trajectories. In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based social networks. pp. 17-24 (2011)
47. Xing, Y., Lv, C., Cao, D., Hang, P.: Toward human-vehicle collaboration: Review and perspectives on human-centered collaborative automated driving. Transportation research part C: emerging technologies 128, 103199 (2021)
48. Yang, S., Bi, S., Athanase, N., Huang, T., Wan, L.: Spatial clustering method for taxi passenger trajectory. Computer Engineering and Applications 54(14), 249-255 (2018)
49. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11784-11793 (2021)
50. Yu, Q., Zhang, H., Li, W., Song, X., Yang, D., Shibasaki, R.: Mobile phone gps data in urban customized bus: Dynamic line design and emission reduction potentials analysis. Journal of Cleaner Production 272, 122471 (2020)
51. Yu, W., Bai, H., Chen, J., Yan, X.: Analysis of space-time variation of passenger flow and commuting characteristics of residents using smart card data of nanjing metro. Sustainability 11(18), 4989 (2019)
52. Zhang, H., Song, X., Long, Y., Xia, T., Fang, K., Zheng, J., Huang, D., Shibasaki, R., Liang, Y.: Mobile phone gps data in urban bicycle-sharing: Layout optimization and emissions reduction analysis. Applied Energy 242, 138-147 (2019)
53. Zhang, H., Shi, B., Song, S., Zhao, Q., Yao, X., Wang, W.: Statistical analysis of the stability of bus vehicles based on gps trajectory data. Modern Physics Letters B 33(03), 1950015 (2019)
54. Zhao, D., Wang, W., Ong, G.P., Ji, Y.: An association rule based method to integrate metro-public bicycle smart card data for trip chain analysis. Journal of Advanced Transportation 2018 (2018)
55. Zhou, B., Zheng, T., Huang, J., Zhang, Y., Tu, W., Li, Q., Deng, M.: A pedestrian network construction system based on crowdsourced walking trajectories. IEEE Internet of Things Journal 8(9), 7203-7213 (2020)
 
2024-74-1
2023-73-4
2023-73-3
2023-73-2

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".