Информационные технологии
Интеллектуальный анализ данных
Методы и модели в естественных науках
N.A. Vasilyeva, A.A. Vladimirov, T.A. Vasiliev "A logical model for integration of heterogeneous experimental data in soil research"
Компьютерный анализ текстов
N.A. Vasilyeva, A.A. Vladimirov, T.A. Vasiliev "A logical model for integration of heterogeneous experimental data in soil research"
Abstract. 

The undoubted challenge for science is the extraction of knowledge from fast growing heterogeneous datasets. Particularly, details of experimental setups are insufficiently formalized and cannot be easily inserted into databases. Thus, there is a problem of using these details in the process of data integration and meta-analyses. For this purpose, we developed a scheme of formalization for object descriptions with its origination, protocols for field and laboratory measurements (including instruments and experimental conditions). It allows the integration of larger amounts of data accounting for its specifics of acquisition, for example, by applying adjustments, assigning weights to data sources (based on its reliability, method precision and experimental uncertainty) or directly accounting for experimental conditions in models. This formalization is currently used to develop an electronic laboratory journal for soil research, intended for detailed description of a conducted or planned experiment. The study aims to: increase the re-producibility of scientific research results; allow automatic data processing and error detection, and most importantly; effective soil data mining for decision support systems.

Keywords: 

heterogeneous data sources, formalization, standards integration, soils, reproducibility.

Стр. 140-147.

DOI: 10.14357/20790279230116
 
 
References

1. Wadoux, A.M.J.-C., M. Roman-Dobarco, and A.B. McBratney. 2021. Perspectives on data-driven soil research. European Journal of Soil Science 72:1675–1689. doi: 10.1111/ejss.13071.
2. Giraldo, O, A. Garcia, and O. Corcho. 2018. A guideline for reporting experimental protocols in life sciences. PeerJ 6:P.e4795. doi: 10.7717/ peerj.4795.
3. Halbritter, A.H, H.J. De Boeck, A.E. Eycott et al. 2020. The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx). Methods Ecol Evol. 11:22– 37. doi: 10.1111/2041- 210X.13331.
4. Wilkinson, M.D., M. Dumontier, I.J. Aalbersberg et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 3(1):160018. doi: 10.1038/sdata.2016.18.
5. Ribeiro, E., N.H. Batjes, and A.J.M. van Oostrum, eds. 2020. World Soil Information Service (WoSIS) – Towards the standardization and harmonization of world soil profile data. Procedures manual 2020, Report 2020/01, Wageningen: ISRIC – World Soil Information 145 p. doi: http://doi.org/10.17027/isric- wdc-2020-01.
6. Niu, S., Y. Luo, M.C. Dietze, T.F. Keenan, Z. Shi, J. Li and III F.S., Chapin. 2014. The role of data assimilation in predictive ecology. Ecosphere 5(5):1- 16. doi: 10.1890/ES13-00273.1.
7. Martre, P., D. Wallach, S. Asseng, F. Ewert et al. 2015. Multimodel ensembles of wheat growth: many models are better than one. Glob Change Biol. 21:911-925. doi: 10.1111/gcb.12768.
8. GOST R ISO 5725-1-2002. 2009. Tochnost’ (pravil’nost’ i pretsizionnost’) metodov i rezul’tatov izmereniy. Chast’ 1. Osnovnyye polozheniya i opredeleniya [Accuracy (correctness and precision) of measurement methods and results. Part 1. Basic provisions and definitions]. Мoscow: StandartinformPubls. 24 p.
9. Buck S. 2015. Solving reproducibility. Science 348(6242):1403. doi: 10.1126/science.aac8041.
10. Alberts, B., R.J. Cicerone, S.E. Fienberg, A. Kamb, M. McNutt, R.M. Nerem et al. 2015. Self-correction in science at work. Science 348(6242):1420- 1422. doi: 10.1126/science.aab3847.
11. Belyaev, I. 2015. Kharuko Obokata ne obzhalovala zaklyuchenie o fal’sifikatsii eyu rabot po sozdaniyu STAP-kletok, TASS. Available at: https://nauka.tass.
ru/nauka/1685497 (accessed November 18 2022).
12. Nosek, B.A., G. Alter, G.C. Banks, D. Borsboom, S.D. Bowman, S.J. Breckler et al. 2015. Promoting an open research culture. Science 348(6242):1422- 1425. doi: 10.1126/science.aab2374.
13. Golozubov, O.M., V.A. Rozhkov, I.O. Alyabina, A.V. Ivanov, V.M. Kolesnikova, S.A. Shoba. 2015. Technologies and Standards in the Information Systems of the Soil-Geographic Database of Russia. Eurasian Soil Science 48(1):1-10. doi: 10.1134/S1064229315010068.
14. Alyabina, I.O., V.A. Androkhanov, V.V. Vershinin, S.N. Volkov, N.F. Ganzhara, G.V. Dobrovol’skii,A.V. Ivanov, A.L. Ivanov, E.A. Ivanova, L.I. Il’in, M.L. Karpachevskii, A.N. Kashtanov, V.I. Kiryushin et al. 2014. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii. Versiya 1.0. Available
at: http://egrpr.soil.msu.ru/ (accessed November 18 2022).
15. Batjes, N.H. 2009. Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use and Management 25:124-127. doi: 10.1111/j.1475- 2743.2009.00202.x.
16. Harden, J.W., G. Hugelius, A. Ahlström et al. 2018. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob Change Biol. 24:e705–e718. doi: 10.1111/gcb.13896.
 
2024-74-1
2023-73-4
2023-73-3
2023-73-2

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".