Информационные технологии
Интеллектуальный анализ данных
B.K. Amos, I.V. Smirnov, I.A. Aidrous, R.R. Asmyatullin, S.G. Glavina "Economic Cycle Prediction using Machine Learning – Russia Case Study"
Методы и модели в естественных науках
Компьютерный анализ текстов
B.K. Amos, I.V. Smirnov, I.A. Aidrous, R.R. Asmyatullin, S.G. Glavina "Economic Cycle Prediction using Machine Learning – Russia Case Study"
Abstract. 

The long-term development of the world economy is characterized by cyclical development. To date, there is no single accepted approach to describe the nature of the economic cycle. Therefore, studies of economic and political cycles are one of the key areas of economic theory. Econometrics and machine learning have a common goal: to build a predictive model, for a target variable, using explanatory variables. This research aims to identify economic cycle in Russian Federation using collective factors. It uses a different approach, concerning classical econometric techniques, and shows how machine learning (ML) techniques can improve the accuracy of forecasts. We used three machine learning algorithms such as k-Nearest Neighbors (kNN), Random Forests (RF) and Support vector machines (SVM). The research is based on 30 economic factors for the period 1990-2020 from FRED, World Bank, WTO, Federal State Statistics Service, Bank of Russia etc. The results indicate that the Russian economy would be very active (peak) in the next quarters. This result could be a new approach to provide policy recommendations to authorities and financial institutions in particular.

Keywords: 

macroeconomics, Machine Learning, Econometric Forecasting, Russian economy, Economic cycle.

Стр. 101-109.

DOI: 10.14357/20790279230112
 
 
References

1. Dalibor, S. : Prévision macroéconomique dans l’ère des données massive et de l’apprentissage automatique.
2. M. Khichane : Le machine Learning par la pratique. Edition ENI
3. Chaiboonsri, Chukiat Wannapan, Satawat. (2019). Big Data and Machine Learning for Economic Cycle Prediction: Application of Thailand’s Economy.
https://doi.org/10.1007/978-3-030-14815-7_29.
4. Pontius, R.G. and Millones, M. (2011) Death to Kappa: Birth of Quantity Disagree- ment and Allocation Disagreement for Accuracy Assessment. International Journal of Remote sensing, 32, 4407-4429.
5. Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297.
6. Raikwal, J. and K. Saxena, Performance evaluation of SVM and k-nearest neighbor algorithm over medical data set. International Journal of Computer Applications, 2012. 50(14).
7. Abdi, M.J. and D. Giveki, Automatic detection of erythemato-squamous diseases using PSO–SVM based on association rules. Engineering Applications of Artificial Intelligence, 2013. 26(1): p. 603-608.
8. Ministry of finance of Russian federation: http:// minfin.gouv.ru
9. Wannapan, S., Chaiboonsri, C., Sriboonchitta, S : Prévision macro-économétrique pendant les périodes du cycle économique à l’aide d’un algorithme bayésien d’optimisation des valeurs extrêmes. Dans : Kreinovich, V., Sriboonchitta, S., Chakpitak, N. (eds.) TES 2018. SCI, vol. 753, p. 706 à 723. Springer, Cham (2018).
10. Chakraborty, C., Joseph, A. : L’apprentissage automatique dans les banques centrales. Document de travail n° 647 des services de la Commission. Banque d’Angleterre (2017).
11. Bholat, D.: Big data and central banks. Q. Bull. Q1, pp. 86-93 (2015). https://www.researchgate.
net/publication/276101527_Big_Data_and_central_banks
12. Chakraborty, C., Joseph, A.: Machine learning at central banks. Stuff Working Paper No 647. Bank of England (2017).
13. Hinge, D.: Big Data in Central Banks. Published by Infopro Digital services Ltd. Central Banking Publications, London (2017).
14. Signorini, L.F. Harnessing big data machine learning technologies for central banks. The Printing and Publishing Division, Bank of Italy, Rome (2018).
15. Coulombe, Philippe Leroux, Maxime Stevanovic, Dalibor Surprenant, Stéphane. (2020). How is Machine Learning Useful for Macroeconomic Forecasting?
16. Lahiri, S.N. (2003). Resampling Methods for Dependent Data. Springer.
17. Raffinot, Thomas. (2017). Asset Allocation, Economic Cycles and Machine Learning.
18. Hull, Isaiah. (2021). Machine Learning and Economics. https://doi.org/10.1007/978-1-4842- 6373-0_2.
19. Statistics, L.B. Breiman, L. (2001). Random forests. Machine Learning. 5-32.
20. Ayres, Robert. (2020). Economic Cycles, in Principle.
https://doi.org/10.1007/978-3-030-39651-0_16.
 
 
 
 
 
2024-74-1
2023-73-4
2023-73-3
2023-73-2

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".