Risk management and safety
Production and infrastructure subsystems efficiency assessment
Information Technology
Mathematical models of socio-economic processes
Recognition of images
M.V. Grigoriev, I.V. Nazirov, E.I. Mogilevskiy, A.V. Khafizov, M.V. Chukalina Using microtomographic images of porous structures to simulate flow processes: arised problems
M.V. Grigoriev, I.V. Nazirov, E.I. Mogilevskiy, A.V. Khafizov, M.V. Chukalina Using microtomographic images of porous structures to simulate flow processes: arised problems

Digital core study, the essence of which is the potential for finding hydrocarbons in small-sized (micron) pores and fractures, takes an important place in the search for deposits and drawing up plans for drilling wells.


modelling, information systems development, human factor, Human Reliability Assessment, reliability, human error probabilities

PP. 85-91

DOI: 10.14357/20790279210110

1. Analysis of the porous structure on the basis of adsorption data. / N. N. Gavrilova, V. V. Nazarov. M.: D. I. Mendeleev Russian State Technical University, 2015 – 132 p. – (in Russian).
2. Kazanskiy N.L. Application of focusators for the forming nanoporous structures of solidcrystalline materials / N.L. Kazansky, S.P. Murzin, V.I. Tregub, A.V. Mezhenin // Computer Optics. – 2007. – Vol. 31, No. 2. – pp. 48-51. – (in Russian).
3. Dynamics of multiphase media. / Nigmatulin R. I. Part 2-M.: Nauka. Phys.-mat. lit., 1987. - 360 p. – (in Russian).
4. Kheifets A.L. 3D models and algorithms of computer parametrization in solving problems of constructive geometry (on some historical examples) / Bulletin of the South Ural State University. A series “Computer technologies, management, radio electronics (Chelyabinsk: Publishing house of SUSU) – 2016. – Vol. 2 – pp 24–42.
5. Masket M. Flow of homogeneous liquids in a porous medium. - M.-Izhevsk: In-t comp. research, 2004. 628 p.
6. Chukalina M.V., Buzmakov A.V., Ingacheva A.S., Povolotsky M.A., Shabelnikova Ya.L., Asadchikov V.E., Bukreeva I., Nikolaev D.P. Analysis of the results of tomographic reconstructed images with highly absorbing inclusions from projections collected under polychromatic conditions. // Information technologies and computing systems 2020, №3, P.49-61.
7. Povolotsky M.A., Kuznetsova E.G., Utkin N.V., Nikolaev D.P. Segmentation of car registration numbers using the algorithm of dynamic transformation of the time axis. // Sensor systems. 2018, Vol. 32, № 1. P. 50-59.
8. Grigoriev Maxim, Buzmakov Alexey, Uvarov Valerii, Ingacheva Anastasiya, Shvets Eugenii. Segmentation criteria in the problem of porosity determination based on CT scans // Proceedings Volume 11433, Twelfth International Conference on Machine Vision (ICMV 2019); 114331E (2020).
9. Fries N., Dreyer M. Dimensionless scaling methods for capillary rise /Journal of Colloid and Interface Science V. 338. 2009. P. 514–518.
10. Official home of The Open Source Computational Fluid Dynamics Toolbox Openfoam https://www.openfoam.com/ Просмотрено: 04.11.2020
11. Official home of the open source 3D finite element mesh generator Gmsh https://gmsh.info/ Просмотрено: 04.11.2020
12. Grigoriev M., Khafizov A.V. et al. Robust Technique for Representative Volume Element Identification in Noisy Microtomography Images of Porous Materials Based on Pores Morphology and Their Spatial Distribution // The 13-th International Conference on Machine Vision (ICMV 2020), International Society for Optics and Photonics. http://arxiv.org/abs/2007.03035.
13. Gostick J., Khan Z.A., Tranter T.G. et al. PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images // Journal of Open Source Software. 2019. V. 4(37). P. 1296. DOI: 10.5281/zenodo.2633284.
14. Gonzalez R., Woods R. Digital Image Processing/ Upper Saddle River – N.J.: Prentice Hall, 2002. 1192 p. ISBN:978-0-13-168728-8.
15. De Myttenaere A., Golden B., Le Grand B., Rossi F. Mean absolute percentage error for regression models. Neurocomputing. 2016 Jun 5;192:38-48.


© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".