Risk management and safety
Production and infrastructure subsystems efficiency assessment
Information Technology
Mathematical models of socio-economic processes
Recognition of images
Anastasia Ingacheva, Marina Chukalina, Dmitry Nikolaev Investigation of the properties of the polychromatic ray integrals polynomial correcting function in the problem of computed tomography
Anastasia Ingacheva, Marina Chukalina, Dmitry Nikolaev Investigation of the properties of the polychromatic ray integrals polynomial correcting function in the problem of computed tomography
Abstract. 

To solve the problem of tomography in polychromatic mode, to suppress cupping artifacts in the reconstructed images, the preliminary processing method of the registered data is used. The method consists of applying a correcting function to each pixel of the registered data. To search for the parameters of the correcting model, additional calibration measurements are usually carried out under the same experimental conditions of a sample similar in composition. Polynomial correcting functions are usually used as a correction model. However, a theoretical justification for the use of this type of function has not yet been made. The paper introduces the concept of the function of integral attenuation of a polychromatic signal and indicates its relationship with the correction formulas of polychromatic ray integrals. The properties of the correcting function model are specified in the case of a sample consisting of one material. The boundaries of the parameters of the polynomial correcting function are refined.

Keywords: 

cupping effect, beam hardening, polychromatic X-Rays, integral attenuation of a polychromatic X-Rays, polychromatic ray integral, correction formulas of polychromatic ray integrals.

PP. 92-100.

DOI: 10.14357/20790279210111
 
References

1. Prof. Gabor T.H. Fundamentals of computerized tomography // New York, USA: City University of New York Graduate Center. 2009. P .297.
2. Suheel Zargar, Vaibhav Phad, Praveen Kumar Poola, Renu John. Role of filtering techniques in Computed Tomography (CT) image reconstruction // IJRET: International Journal of Research in Engineering and Technology. 2015. V. 4. № 12. P. 2319–1163.
3. Natterer F. Fourier reconstruction in tomography // Numerische Mathematik. 1985. V. 47. №. 3. P. 343-353.
4. Buzmakov A.V., Asadchikov V.E., Zolotov D.A., CHukalina M.V., Ingacheva A.S., Krivonosov YU.S. “Laboratory X-ray microtomographs: methods for preprocessing experimental data” [“Laboratornye rentgenovskie mikrotomografy: metody predobrabotki eksperimental’nyh dannyh”] // Izvestiya RAN. Seriya Fizicheskaya. 2019. V. 83, № 2. P. 194–197.
5. Cormack A.M. Early two-dimensional reconstruction and recent topics stemming from it // Medical physics. 1980. Т. 7, № 4. P. 277–282.
6. Brooks R.A., Di Chiro G. Beam hardening in x-ray reconstructive tomography // Physics in medicine & biology. 1976. Т. 21. № 3. P. 390.
7. Zatz L.M., Alvarez R.E. An inaccuracy in computed tomography: the energy dependence of CT values // Radiology. 1977. Т. 124. № 1. P. 91–97.
8. Duerinckx A.J., Macovski A. Polychromatic streak artifacts in computed tomography images. // Journal of Computer Assisted Tomography. 1978. Т. 2. №4. P. 481–487.132
9. Young S., Muller H., Marshall W. Computed tomography: beam hardening and environmental density artifact. // Radiology. 1983. Т. 148, № 1. P. 279–283.
10. Dewulf W., Tan Y., Kiekens K. Sense and non-sense of beam hardening correction in CT metrology // CIRP Annals-Manufacturing Technology. 2012. Т. 61. № 1. P. 495–498.
11. Chukalina M., Ingacheva A., Buzmakov A., Polyakov I., Gladkov A., Yakimchuk I., Nikolaev D. Automatic Beam Hardening Correction For CT Reconstruction // 31st European Conference on Modelling and Simulation. 2017. P. 270–275. Web of Science, Scopus.
12. Herman G.T. Correction for beam hardening in computed tomography // Physics in Medicine and Biology. 1979. Т. 24. № 1. P. 81.
13. Coleman A., Sinclair M. A beam-hardening orrection using dual-energy computed tomography // Physics in Medicine & Biology. 1985. Т. 30. № 11. P. 1251.
14. Joseph P.M., Ruth C. A method for simultaneous correction of spectrum hardening artifacts in CT images containing both bone and iodine // Medical Physics. 1997. Т. 24. № 10. P. 1629–1634.
15. Kachelrieß M., Sourbelle K., Kalender W.A. Empirical cupping correction: A first-order raw data precorrection for cone-beam computed tomography // Medical physics. 2006. Т. 33. № 5. P. 1269–1274.
16. Kachelrieß M., Berkus T., Stenner P., Kalender W.A. Empirical Dual Energy Calibration (EDEC) for cone-beam computed tomography // 2006 IEEE Nuclear Science Symposium Conference Record. Т. 4. IEEE. 2006. P. 2546–2550.
17. Kyriakou Y., Meyer E., Prell D., Kachelrieß M. Empirical beam hardening correction (EBHC) for CT // Medical physics. 2010. Т. 37. № 10. P. 5179–5187.
18. Reiter M., de Oliveira F.B., Bartscher M., Gusenbauer C., Kastner J. Case Study of Empirical Beam Hardening Correction Methods for Dimensional X-ray Computed Tomography Using a Dedicated Multi-material Reference Standard // Journal of Nondestructive Evaluation. 2019. Т. 38. № 1. P. 10.
19. Tan Y., Kiekens K., Welkenhuyzen F., Kruth J.P., Dewulf W. Beam hardening correction and its influence on the measurement accuracy and repeatability for CT dimensional metrology applications // Conf. on Industrial Computed Tomography. Wels, Austria. 2012. Vol. 355. P. 362.
20. Tan Y., Kiekens K., Welkenhuyzen F., Angel J., De Chiffre L., Kruth J.P., Dewulf W. Simulation-aided investigation of beam hardening induced errors in CT dimensional metrology // Measurement Science and Technology. 2014. Т. 25. № 6. P. 064014.
21. Salmon P.L., Liu X. MicroCT bone densitometry: context sensitivity, beam hardening correction and the effect of surrounding media // The Open Access Journal of Science and Technology. 2014. Т. 2.
22. Ingacheva A.S. “Spectral model of the signal of single-channel X-ray measuring devices using polychromatic probe radiation” [“Spektral’naya model’ signala odnokanal’nyh rentgenovskih izmeritel’nyh priborov, ispol’zuyushchih polihromaticheskoe zondiruyushchee izluchenie”] // Sensornye sistemy. 2019. V. 33. № 3. P. 212-221.
23. Hinchin A.YA. “Short Course in Calculus, Tutorial” [“Kratkij kurs matematicheskogo analiza, Uchebnik”]. Izd. 5-e, stereotip – M.:Leningrad. 2021. 632 p.
 

2024-74-3
2024-74-2
2024-74-1
2023-73-4

© ФИЦ ИУ РАН 2008-2018. Создание сайта "РосИнтернет технологии".