 |
A.A. Ivanova, S.A. Gladilin, A.E. Zhukovsky, E.L. Pliskin Database for the administrative accounting of scientific publications |
 |
Abstract. The article considers software requirements for administrative accounting of scientific publications. We design the database structure, taking into account various aspects of the publication activity of the scientific team. Keywords: bibliographic references, scientific publications, database, publication activity, scientometrics, administration of scientific research. PP. 83-89. DOI: 10.14357/20790279180509 References 1. Strakhov A.A., Anisimova Т.V. Automation of bibliographic description of sources and links in the MS Word 2010 document // Bulletin of the Moscow University of the Ministry of Internal Affairs of Russia. 2017. №5. 2. I.V. Artemova. Accounting for R & D by the performer in 2018. URL: https://www.referent.com/40/11763 (retrieved 10.07.2018). 3. Informational and analytical system “TRUE”. User guide. Subsystem “Research work”. URL: http://docs.istina.msu.ru/data_input/research.html (retrieved 10.07.2018). 4. Website SNOSKA.INFO for registration of bibliographic references. URL: http://www.snoskainfo.ru/ (retrieved 10.07.2018). 5. The ZoteroBib website for creating bibliographic lists. URL: https://zbib.org (retrieved 10.07.2018). 6. Gospodarik Yu.P. Accounting for individual achievements of students in research and development / / Higher education in Russia. 2013. №3. URL: https://cyberleninka.ru/article/n/uchet-individualnyh-dostizheniy-studentov-vnauchno- issledovatelskoy-deyatelnosti (retrieved 10.07.2018). 7. Nikolenko V.N., Vyalkov A.I., Martynchik S.A., Glukhova E.A. Approaches to the evaluation of effectiveness and ways to stimulate the publication activity in a major medical college // Higher education in Russia. 2014. №10. URL: https://cyberleninka.ru/article/n/podhody-kotsenke-effektivnosti-i-sposoby-stimulirovaniyap u b l i k a t s i o n n o y - a k t i v n o s t i - v - k r u p n o m - meditsinskom-vuze (retrieved 10.07.2018). 8. Van Eck, Nees Jan, and Ludo Waltman. “CitNetExplorer: A new software tool for analyzing and visualizing citation networks.” Journal of Informetrics 8.4 (2014): 802-823. 9. Pearce, Joshua M. “How to Perform a Literature Review with Free and Open Source Software.” Practical Assessment, Research & Evaluation 23.8 (2018): 2. URL: https://research.aalto.fi/files/21756617/ELEC_Pearce_How_to_perform_PaRE.pdf (retrieved 10.07.2018). 10. Mingers, John and Loet Leydesdorff. “A review of theory and practice in scientometrics.” European Journal of Operational Research 246.1 (2015): 1-19. URL: https://arxiv.org/ftp/ arxiv/papers/1501/1501.05462.pdf (retrieved 10.07.2018). 11. Ulanin S.E. Virtual research environment // Bulletin of the State University of Management. 2017. №2. URL: https://cyberleninka.ru/article/n/ virtualnaya-nauchno-issledovatelskaya-sreda (retrieved 11.07.2018). 12. K. Bulatov, V.V. Arlazarov, T. Chernov, O. Slavin and D. Nikolaev. “Smart IDReader: Document Recognition in Video Stream,” 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 2017, pp. 39-44. doi: 10.1109/ICDAR.2017.347 13. A. Zhukovsky et al. “Segments Graph-Based Approach for Document Capture in a Smartphone Video Stream,” 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Kyoto, 2017, pp. 337-342. doi: 10.1109/ICDAR.2017.63 14. T.S. Chernov, N.P. Razumnuy, A.S. Kozharinov, D.P. Nikolaev and V.V. Arlazarov. “Image quality assessment for video stream recognition systems,” Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 106961U, pp. 1-8, 2018, DOI: 10.1117/12.2309628. 15. D. Ilin, E. Limonova, V. Arlazarov and D. Nikolaev. “Fast Integer Approximations In Convolutional Neural Networks Using Layer-By-Layer Training,” Proceedings SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016), 103410Q, pp. 1-5, 2017, DOI: 10.1117/12.2268722. 16. V.V. Arlazarov, O.A. Slavin, A.V. Uskov and I.M. Yanishevskiy. “Modelling the flow of character recognition results in video stream,” Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software, vol. 11, no 2, pp. 14-28, 2018. 17. D. Abulkhanov, I. Konovalenko, D. Nikolaev, A. Savchik, E. Shvets and D. Sidorchuk. “Neural Network-based Feature Point Descriptors for Registration of Optical and SAR Images,” Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017), 106960L, pp. 1-8, 2018, DOI: 10.1117/12.2310085. 18. Ingacheva A., Nikolaev D., Khanipov T., Chukalina M. Algebraic reconstruction of the hardware function of the blurred image along the brightness profiles of object boundaries // Sensory systems. – 2018. – Vol. 32. – No. 1. – P. 67-72. – DOI: 10.7868 / S0235009218010109. 19. T.S. Chernov, S.I. Kolmakov and D.P. Nikolaev. “An algorithm for detection and phase estimation of protective elements periodic lattice on document image,” Pattern Recognition and Image Analysis, vol. 27, no 1, pp. 53-65, 2017, DOI: 10.1134/S1054661817010023.
|