|
А. Ю. Переварюха "Гибридная модель развития локально взрывообразного популяционного процесса насекомого" |
|
Аннотация. Взрывообразное развитие популяционного процесса, характерное для значительного числа видов насекомых, остается одним из опасных исследуемых экологами явлений. Для подобных ситуаций трудно выработать эффективные меры противодействия, и их последствия описываются как опустошающие нашествия вредителей. Предлагается непрерывно-дискретная система для формализации изменений выживаемости в жизненном цикле насекомого, запускающих спонтанное развитие кратковременного популяционного скачка с преодолением первого порогового уровня численности. Моделируется документированный энтомологами сценарий стремительного затухания после достижения предельной плотности вредителя с применением функционала, трансформирующего свойства притягивающего множества мультистабильной динамической системы. Применение оригинальных вычислительных структур должно способствовать анализу внезапных критических переходов между фазами вспышки. Ключевые слова: динамика популяций насекомых, гибридные системы, нелинейные эффекты в биологических процессах, пороговые состояния. Стр. 94-104. A. Yu. Perevaryukha"Hybrid model of locally explosively growing population processes of insect"Abstract. The explosive development of sudden population processes typical for a significant number of species of insects remains one of the most dangerous phenomena studied by ecologists. For such cases it is difficult to work out an effective response to such events. We propose a continuous-discrete system to formalize the changes of survival in the life cycle, triggering spontaneous development of short-term jump in insect population to overcoming the first threshold number. The use of new computational structures should facilitate the analysis of critical transitions between the phases of the process. In this paper we simulated the scenario documented by entomologists of rapid damping after reaching the limiting density of the pest with the functional properties of transforming attracting set of multistable dynamical system. Keywords: dynamics of insect populations, hybrid systems, nonlinear effects in biological processes, the threshold condition. Полная версия статьи в формате pdf. 1. Liebhold A. M., Halverson J. A., Elmes G. A. Gypsy moth invasion in North America: a quantitative analysis // J. Biogeogr. 1992. 19:513–520. 2. Palnikova Ye. N., Meteleva M. K., Sukhovolskiy V. G. Vliyanie modifitsiruyushchikh faktorov na dinamiku chislennosti lesnykh nasekomykh i razvitie vspyshek massovogo razmnozheniya // Lesovedenie. 2006. № 5. S. 29–35. 3. Moran P. A. P. Some remarks on animal population dynamics // Biometrics. 1950. № 6. P. 250–258. 4. Strayer D. L., Malcom H. M. Long-term demography of a zebra mussel (Dreissena polymorpha) population // Freshwater Biology. 2006. V. 51. Iss. 1. P. 117–130. 5. De Melo W., van Strien S. One-Dimensional Dynamics. Springer-Verlag, 1993. 605 p. 6. Feigenbaum M. Universal behavior in nonlinear systems // Physica D. 1983. V. 7. № 1–3. P. 16–39. 7. Misiurewicz M. Structure of mappings of an interval with zero entropy // Publications Mathematiques de I. H. E. S. 1981. V. 53. P. 5–16. 8. Sharkovskiy A. M. Sushchestvovanie tsiklov nepreryvnogo preobrazovaniya pryamoy v sebya // Ukrainskiy matematicheskiy zhurnal. 1964. T. 16. № 1. S. 61–65. 9. Clark L. R. The population dynamics of Cardiaspina albitextura (Psyllidae) // Australian Journal of Zoology. 1964. V. 12. № 3. P. 362–380. 10. Kriksunov Ye. A., Snetkov. M. A. Model formirovaniya popolneniya nerestovogo stada s uchetom vesovogo rosta ryb // DAN SSSR. 1980. T. 253. № 3. S. 759–761. 11. Nedorezov L. V., Utyupin Yu. V. Diskretno-nepreryvnaya model dinamiki chislennosti dvupoloy populyatsii // Sibirskiy matematicheskiy zhurnal. 2003. T. 44. № 3. S. 650–659. 12. Kolesov Y., Senichenkov Y. Simulation of Variable Structure Models using Rand Model Designer // Proceedings of the 2013 8th EUROSIM Congress on Modelling and Simulation. P. 294–299. 13. Keitt T. H., Lewis M. A., Holt R. D. Allee effects, invasion pinning, and species borders // The American Naturalist. 2001. V. 157. № 2. P. 203–216. 14. Tobin P. C. The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions // Population Ecology. 2009. V. 51. P. 373–384. 15. Perevaryukha A. Y. Hybrid model of bioresourses' dynam- ics: equilibrium, cycle, and transitional chaos // Automatic Control and Computer Sciences. 2011. V. 45. № 4. P. 223–232. 16. Astafev G. B., Koronovski A. A., Hramov A. E. Behavior of dynamical systems in the regime of transient chaos // Technical Physics Letters. 2003. V. 29. № 11. P. 923–926. 17. Barbosa P., Schultz J. C. Insect outbreaks. San Diego: Academic Press, 1987. P. 105–106. 18. Perevaryukha A. Yu. Razrabotka vychislitelnykh modeley vosproizvodstva ryb dlya stsenarnogo issledovaniya // Tavricheskiy Vestnik Informatiki i Matematiki. 2014. № 1. S. 93–103. 19. Green R. E., Harley M., Miles L., Scharlemann J. Global climate change and biodiversity. Norwich: University of East Anglia, 2004. 309 p.
|